
variables at the start of the program, and refer
back to these variables thereafter. This makes
the program faster and neater, and it means that
you can change these values without having to
hunt through the program for every occurrence.

Even with the sort of formal approach that we
have outlined here, it's difficult to eliminate bugs
entirely, so it's important to adopt a disciplined
method for finding and eradicating them. The
commonest bugs are syntax errors, and you can
usually correct them as soon as you encounter
them. But this is not always the case. Consider:

10 PRINT"BIG BUGS HAVE LITTLE BUGS UPON"
20 PRINT"THEIR BACKS TO BITE THEM'

Such lines often cause an error message when
executed if they're not keyed in as two separate
lines. Line 10 contains 40 characters, so when
you type it on a 40-column screen, the cursor
finishes up at the start of the next screen line,
which can cause you to forget to hit RETURN on
line 10 before you start typing line 20. If so, then
what look like two perfect lines in your program
will actually be one line with a syntax error (the
number 20) in the middle of it. One way of
trapping these errors is to list suspect lines
individually rather than as part of a piece of
program.

Error messages, when they're not
incomprehensible, can be misleading. Take for
example:

25 DATA 10.2;34.56.9,0.008,15.6
30 FOR K=1 TO 5: READ N(K):NEXT K

This may fail to execute because of an alleged
syntax error in line 30; whereas the error is
actually in the data on line 25 (One of the zeros
has been mis-keyed as the letter 0).

Coding errors that don't result in syntax errors
are the commonest bugs, and usually also the
hardest to find. In this case, it is vital to be
methodical. Begin by trying to find out roughly
where the bug is in the program. This is
reasonably easy with well-structured modular
programs, and can be made easier by the TlACE
utility, which causes the current program line
number to be printed on the screen as it is
executed. If your machine doesn't allow this,
then you can create TRACE statements
periodically throughout the program (PRINT
"LINE 150" at the beginning of line 150, for
example). Similarly, you can use the STOP
command to halt program execution at
significant places in the program so that you can
examine the values of crucial variables. You can
do this in direct mode using PRINT, or you can
write a subroutine onto the end of your program:

11000 REM PRINT THE VARIABLES
11100 PRINT"SCORE,SIZE,FLAGS"
11200 PRINT SC;SZ;F1;F2
11300 PRINT"BOARD ARRAY"
11400 F3R K=1 TO 10:PRINT BD$(K):NEXT K

Consequently, when the program comes across a
STOP command, you can type GOTO 11000, and

have the current state of the variables displayed.
You can even change them (by typing, say,
SZ=17 and pressing RETURN), and then restart
the program with the CONTinue command.

When you've found that the bug is lurking
within certain lines, or in a particular variable,
then you should be close to eliminating it, but
tread carefully! Try one remedy at a time so that
you can see what its exact effect on execution is.
It's very easy to make several changes between
runs, perhaps getting rid of one bug, but creating
one or more new ones, and then forgetting
exactly what it was you did!

Loops and branches, especially when they're
nested, are particularly fertile ground for bugs,
and require special care in both writing and de-
bugging. Consider this piece of code:

460 IF SM< 0 AND SC<>-1 THEN IF SC>0 OR
SM=SC-F9 THEN LT=500

470 FOR C1=1 TO LT: FOR C2=LT TO Cl STEP-1
480 SC=SM+SC*C2
490 NEXT C2:SM=0:NEXT Cl

What does this all mean? Even if you know what
it's meant to do, would you know if it were
succeeding or failing? Putting statements inside
a loop when they should be outside is a sure way
to encourage hugs. And so is failing to cover all
possible conditions when writing IF ... THEN
statements. A special case of this occurs when
you write multiple statements after IF ... THEN.
For example:

655 IFAS=" THEN GOTO 980:AS=BS
660 PRINT AS

The statement AS=BS will never be executed
because either AS=", in which case control
passes to line 980, or AS <>", in which case the
rest of line 655 is ignored.

Experience is the best teacher of de-hugging,
but a step-by-step approach and a disciplined
method are invaluable aids. Take your time, and
— above all — DON'T PANIC!

Early Bug
To new programmers, bugs
often seem to take on animate
characteristics, such as hiding
from the programmer and
deliterately underminiig all
his efforts to tine them.
However, the first bug at least
the one from which the term is
derived) really was animate. In
trying to elimina:e an error
from a program she was
developinc on the Harvard
Mrk II in 1945, Captain Grace
Hop p er discovered that a large
moth had got caight up in the
electromechanical working of
the computer ani was causing
the fault. As a result of that
incident, the term 'de-
bugging' was coined

THE HOME COMPUTER COURSE 433


