
FA1ZT3/MACHINE CODE

Decimal Binary Hex
0 00000000 0
1 00000001 1
2 00000010 2
3 000D0011 3

. . . . . . . . . . . I . . . . . . . . .

7 00000111 7
8 00001000 8
9 00001001 9

10 00001010 A
11 00001011 B
12 00001100 C
13 00001101 D
14 00001110 E
15 00001111 F
16 00010000 10
17 00010001 11

...........
24 00011000 18
25 00011001 19
26 00011010 1A
27 00011011 16
......................

31 00011111 IF
32 00100000 20
33 00100001 21

The range of a single eight-bit byte number,
therefore, is eight binary digits, or two hex digits:

0 to 255 in decimal
00003000 to 11111111 in binary

0 to FF in hex

To convert a hex number into binary, therefore,
you simply express each hex digit as a four-bit
binary number. If a single-byte number is
expressed as a two-digit hex number, then the
leftmost hex digit corresponds to the four leftmost
binary bits, while the rightmost hex digit
corresponds to the four rightmost binary digits.
Splitting a byte like this gives us two 'nybbles' (a
nybble is half a byte). The leftmost nybble,
corresponding to the leftmost hex digit, is called
the upper or most significant nybble; and the
rightmost nybble is called the lower or least
significant nybble. Here is an example:

Upper Lover
Nybble Nybble

1 1
206 = 1100 1110 = C E

t
decimal binary equivalent hex equivalent

It is important to make ourselves as familiar as
possible with the hexadecimal number system,
for the simple reason that it makes eight-bit byte
manipulation much easier than if we were using
binary. Convincing yourself of this requires a
little practice, not just with number examples, but
particularly with memory addresses and the
contents of memory bytes. Once this becomes
important — and very soon it will — you'll
wonder how you ever managed in decimal.

We give programs in this instalment of the

Machine Code course, for the BBC Micro,
Commodore 64, and the Spectrum, that allow us
to look at the contents of specified bytes in
memory. These `Mempeek' programs, as we
have called them, ask you first to state the `Start
Address' (i.e. specify the first byte number) and
then to give the number of bytes to be looked at.
If, for example, you wished to specify byte1953
as your beginning point and request that the
contents of the four following bytes be displayed,
then the screen will show the decimal number
1953 in the leftmost column, and then list the
contents of byte1953, byte1954, byte1955 and
byte 1956 in the next four columns.

Bear in mind that if the machine shows that
byte1956 contains the decimal number 175, what
we mean is that in one of the memory chips, an
area that the machine calls byte1956 carries a
pattern of eight voltage levels. If 0 volts is
represented by 0, and 5 volts by 1, then byte1956
carries the voltage pattern 10101111. This we
choose to interpret as a binary number, and its
decimal equivalent is 175.

It is vital to remember that we use an imprecise
kind of shorthand most of the time that we talk
about computers; and expanding it into physical
description is always salutary, and should help to
avoid confusion.

The contents of a byte displayed on the screen
are not the `actual' contents. What we see are
character data that have been assigned to the
voltage patterns of the bytes. This means that
having interpreted the voltage patterns as binary
numbers, and having converted the binary to
decimal numbers, we are going one step further
and converting decimal numbers into characters
according to ASCII — the American Standard
Code for Information Interchange. This
character data is displayed in the last column of
the display. This is an internationally recognised
code implemented in most computers, which
substitutes decimal numbers between 0 and 127
for all the characters on a keyboard (historically,
a teleprinter keyboard). In this code the decimal
number 65 means the upper-case character `A',
66 means `B', 67 means `C', and so on. Among
the non-alphabetic characters, 32 means a space
character, 42 means an asterisk, 13 means the
Return key, and so on.

The printable ASCII characters start at number
32 and finish at number 127. Codes outside that
range are undefined, or not printable, or specific
to particular machines. Because of this, when we
run the Mempeek programs, the monitor prints a
dot to represent any byte containing a number
out of range. In the next instalment of the course,
we will provide a comprehensive ASCII
character set for the values between 0 and 127.

An investigation of the ASCII character set is
particularly useful as background to a full
understanding of machine code for two
important reasons. Firstly, it reinforces the point
that how you interpret memory contents is
entirely a matter of choice. You can say that a

THE HOME COMPUTER ADVANCED COURSE 57


