
SAVED, PCR
$FFFA
2,X
,Y+
3,X
,Y
,x
[SFFFE]

Address of Saved

SWI-Vector

First of three bytes

Restored

Other two bytes

Restored

Saved Stack-Pointer

Indirect jump via reset vector

2

SAVEIT
SETUPJ
IN IT

STACK P,PCR
JTABLE, PCR
PROM PT, PCR
DUTCH
GETCOM

00CM 0
REPTO2

Stack-Pointer for Display-
Registers

Save-Values

Set-up-Jump-Table

Set-up-Interrupt and Get
Start-Address

Save Stack-Pointer

Get prompt and

display it

Get command

Double offset for 16-bit table

Obey Command

Next Command

MACHINE CODE/6809 CODE

-

THE MAIN MODULE
Data:

Prompt for command entry is ASCII character>'
Command-Offset into table of command characters

and Jump-Table
Process:

Save-Values
Set-Up-Jump-Table
Set-Up-Interrupt
Get Start-Address
Repeat

Display Prompt
Get-Command
Do-Command

Indefinitely

That completes our debugger program. At the
moment it is rather fragmented, but that is a
consequence of modular construction. At this
point we can optimise the code if we wish by
looking for short cuts. For example, you may find
that you have had to move a lot of values around to
make sure that they are in the right registers for a
subroutine, so you might make savings by
redefining register usage. This is not really

advisable unless memory space is very restricted.
We have defined the same data areas in a number
of different places, as they are required. There are
two ways in which you might handle data areas in
the complete program: you can retain the data
with the module that uses it, which is theoretically
the best option; or you can define all the data
together at the start of the program, which has real
advantages if you ever want to use a disassembler
(or even a debugger) on the program.

The debugger should be loaded into any spare
memory not occupied or used by the program to
be debugged. It is entered by making a jump to the
DEBUG entry point, so it is necessary to know this
address before you start.

In the later part of this 6809 machine code
series, we have tried to show the best way in which
programs are developed, illustrated with a variety
of techniques. Therefore, the design of our
debugger program is not necessarily the most
efficient way to do this particular job. If you have
followed everything, however, then you should
have a fairly comprehensive understanding of
Assembly language programming in general, and
6809 Assembly in particular.

Set-Up-Jump-Table
JTABLE 	RMB 	16 	 Space for 8 two-byte

addresses

SETUPJ 	LEAY 	JTABLE,PCR 	Base address of table in V

LEAX 	CMOB, PCR 	Start address of CMDB
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMOIJ ;PCR 	Start address of CMDU
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMOO,PCR 	Start address of CMDD
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMOS, PCR 	Start address of CM DS
subroutine

STX 	,Y++ 	Store it in table

LEAX 	CMDG,PCR 	Start address of CMDG
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMOR,PCR 	Start address of CMDR
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMDM,PCR 	Start address of CMDM
subroutine

SIX 	,Y++ 	Store it in table

LEAX 	CMDQ,PCR 	Start address of CMDO
subroutine

STX 	,Y++ 	Store it in table

This is the actual jump to the subroutine. We assume that X
contains the address of JTABLE and B the offset

DOCMO 	JMP 	[B,X]

Save-Values
SAVED 	RMB 	5 	 Five bytes to be saved

SAVEIT 	LEAX 	SAVED, PCR 	Get address to save in

TFR 	S,D 	Move StoD

840 THE HOME COMPUTER ADVANCED COURSE

ADDO 	#2 	 Add two to take care of the
return address

LOY 	 Get Interrupt vector address

LDA 	 Get first byte to be saved

LDD 	 Get other two bytes

STD 	 Save them

RTS

Command Q
CMDO 	LEAX

LDY
LDA
SIA
LDD
STD
LOS
JMP

Main Module
PROMPT FCB
STACKP 	RMB

DEBUG 	BSR
BSR
BSR

ENTRY 	STS
LEAX

REPTO2 LDA
BSR
BSR
LSLB
BSR
BRA

SID x++ 	 Save it

X+ STA 	 Save it

,

SFFFA

,

