PROGRAMMABLE ALARM CLOCK

Having developed a system sensitive to intrusive
footsteps, let's now consider a project to turn your
micro into a handy programmable alarm clock.
Such a system can, of course, be tailored to meet
one’s exact needs. The program we give (in
versions for the Commodore 64 and the BBC
Micro) allows the user to enter:

1) the time of day;

2) the number of ‘snooze’ intervals (periods
between the bursts of the buzzer or music)
required;

3) for each snooze interval, whether music, alarm
or a silent period is required and the interval
length;

4) for each interval, whether a light should be
switched on;

5) the latest desirable rising time.

The program works on the assumption that the
following connections are made to the low voltage
output box:

1) A tape recorder is connected to line 0 through a
mains relay.

2) A table lamp is connected to line 1 through a
mains relay to line 1.

3) A nine-volt electric bell is connected directly to
line 3.

The program accepts the latest rising time and
works backwards through the programmed
intervals to calculate the start time for each
interval. Use is made of arrays to store the data
that tell us which appliances are to be on during
any one period. Note that the array variables are
given values that correspond to the bit value
required in the data register to turn that particular
appliance on. By making use of the logical OR
instruction, we can simply find the composite total
that must be placed in the data register to turn any
combination of the devices on.

Most of our programming effort has been
directed towards manipulating string variables to
allow numerical calculations to be made. This is
particularly true of the Commodore 64 program,
as the version of Basic used by that machine lacks
the useful MOD and DIV commands available to
programmers of the BBC Micro.

We have now developed a truly flexible input
and output system for microcomputer control that
allows us to control LEDs, low voltage devices and
mains appliances, as well as allowing the micro to
accept and interpret data input from a range of
sensors. There are many possibilities now open to
us to design control systems for our own use. In the
examples given here, the micro is used as a
sophisticated ~ programmable timer. Other
applications could involve turning electric fires on
and off in response to a pair of heat sensors, or
turning on an electric light at night. There are
endless possibilities for experimentation.

Commodore 64

180
118
128
130
148
158
160
17
188
198
o
210
213
2z
2an
248
&30
268
ave
288
289
=L
Rl
320
3an
340
ase
e
3ve
380
398
L]
418
420
430
a8
438
460
a7
480
ag50
SR
s1@
see
530
S48
S50
S80
s7e
=e8
L
1. 1]
51
BED
538
B840
(1]
BTD
680
[-3-1]
Ten
Tio
Tan
730
Tan
Toe

REM #sss CBM &4 ALARM CLOCK suss
DDR=363791DATREG=58377

POKE DOR 255 1POKEDATREG .8
PRINTCHRS(1473 1REM CLEAR SCREEN
INFUT"MUMBER OF SNOOZE INTERVALS"IN
M=N+1

DIM ALMI MM L (M), TSEIM) , TIM)

£

REM sews INPUT INTERVAL DATA ssss
FOR C=1 TO N

PRINTIPRINT® INTERVAL MUMBER®IC
INPUT*MUSIC ,ALARM OR SILENCE (M/ASE)"IANS
ANS=LEFTH (AN, 1)

IE ANS{) “M*ANDANSS) "A*ANDANSL > "5 THEN 218
IF AlE="M" THEN MICI=liALCI=0

IF AMNS="A" THEN A(CI=BIMIC=0

IF ANS=*S" THEN A(CI=@IMICI=8
INPUT*LIBHT ON (Y NI "1ALS
LE=LEFTE(ALS, 1)

1F L&CH"Y" AND L®CI*N" THEN 268

1F L&="Y* THEN L{(C)=2:680TO310
LiCi=@

INPUT"TIME INTERVAL (MINS)®:T(C)
NEXT C

)

INPUT*LATEST RISING TIME (HHMM)*ILTS
LT®=LT#+"80" :REM ADD SECONDS
TSS{M+1 I sLTSIREM LAST TIME

REM CONVERT LATEST TIME TO MINUTES
LM=BBsVAL (LEF TE(LTS,2)) +VAL (MIDSILTS, 3,232
1

INPUT TIME NOW C(HHFMD " THE
TiS=THE+"0B" 1REM START TIMER

]

REM sess AMNALYSE AND CALCULATE ssss
REM s CALC INTERVAL START TIMES #2
FOR C=N TO 1 STEP -1

LM=LM-T({CItREM START TIME IN MINS
HR= INT{LM/B8)

MN=INT(EB% (LM/BB-HR+.0008813)
HRE=STRE&(HR) IREM HOURE
MuE=STRE(MN) IREM MINS
MNE=MIDSCMNS 2, LEN(MNS) 3
HR&=MIDS(HRS 2 ,LEN{HRS))

REM s ADD LEADING ZEROS =

SPE= 0"

HRS=LEFTH(SF®,2-LEN(HRS)) +HRS
MNSSLEF TH(SPS, 2-LEN(MNS) 3 +MNS

TESIC) sHRE+MNS+"D0 "

NEXT C

L)

REM ssss 0D wess

PRINTCHR® 147

FOR C=1 TO N+l

IF TIS{TS$(C)THENGDBUBT 10100TDE3D
DN=M(C) OR A(C) DR L(C)IREM DATRED DATA
PFOKE DATRED,DN

NEXT C

POKE DATRED.®

END

[}

REM sass DISPLAY TIMER B/R ssan
PRINTCHR®(145)) 1REM CRER UP
PRINTLEFTS(TI®S, 221 "1 ") MIDS(TIS, 3,820
PRINT"
RETURN

"IRIGHTE(TI®,2)

18
15

=l
290
388
Ei T

320

330
348
58
348
a7e
388
Ive
489
4z
428
444

REM BEC ALARM CLOCK
MODE?
DDR=&FE&Z 1 DATREG=&FE &R
CLS
INFPUT"NUMBER OF SNODDZE INTERVALS" N
M=+
DIM ACMI (MIH) LOMY TCM) , TECHD
REM s### [NPUT INTERVAL DAaTA ssss
FORC=1 TO N
PRINT™ INTERVAL NUMBER® ;C
REPEAT
PRINT "MUSIC,ALARM OR SILEMCE®;
INPUT " (M/ASS)" jANS
Ae=LEFTS(ANS 1)
UNTIL Akg="M"DRANS="A" 0RANE="5"
IF ANS="M"THEN M(Ci=1:1A(C)=8
1F AlS="A"THEN M(Ci=8:A(CI=8
IF ANS="S"THEN M(C)=8:A{C)=0
REPEAT
INPUT"LIGHT ON (Y/N)" jALS
ALS=LEFTS(ALS,1)
UNTIL AL$="Y" OR ALS="N"
IF ALS="Y" THEN L(C)=2 ELSE L{(C)=¢
INPUT*TIME INTERUVAL (MINS)"3T(C)
NEXT C
H
INPUT"LATEST RISING TIME (HHMM)*;LT#
TES(N+1)=4PRB e SO#UAL(LEFTS(LTS, 2037
TSN+ 1)=TSIN+12+VALCRIGHTS(LTS,2>)
REM CONVERT LATEST TIME TO MINS
LM=&aw AL (LEFTS(LT®,2))
LM=LH+UALIRIGHTS (LTS, 233
INPUT*TIME NOW (HHMM)" jTHS
TIME=d40BB#(SA*VALCLEFTS{TNG, 23}
TIME=T IME+WALCRIGHTSCTNS 200
H
REM aNALYSE AND CALCULATE
FORC=N TO 1 STEP -1
LM=LM-TCC? tREM INTERVAL START
TE(Ci=sRBB=LM
MNEXT C

REM s#ss G0 s=zs
LS

FOR C=1 TO N+l
REFEAT
FPROCt imer

UNTIL TIME»=TS(C)

REGDATA=MIC) OR ALCH OR LIC2
PDATREG=REGDATA
MNEXT C

PDATREG=8

END

-1

1eag
1eze
1830
Liade
1842
1843
1344
1845
1a%5e
rasn

DEF PROCtimer

MIN=(TIME DIV &888) MOD &0
HR=(TIME DIV &@p8) HMOD &8

MIN$=STR®{MIN) i HRE=STRE(HR)

REM ADD LEADING ZERDS

SPe="08"

HRE$=LEFT#(SP%,2-LEN(HR%)) + HR$

MINE=LEFT$(SP$, 2-LEN(MINS)) +MINS
PRINTTABC18, 1 2)HRE " 1 " MINS
EMDPROC

AN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 675

