
384 THE HOME COMPUTER COURSE

® Passwords To Computing

Original Author
It is possible to write computer programs that will themselves
generate other programs, or correct errors in human coding

iI

`If computers are so smart, how come they need
humans to program them?' Experienced
computer users will tend to shrug off a question
like this from a sceptical newcomer, but it is not as
silly as it seems. Much research is being
undertaken in writing programs that can generate
other programs, and operating systems that can
correct bugs in code written by humans.

Consider the SYNTAX ERROR? message, which is
frequently encountered by home computer users.
This can be infuriating because the message gives
you so little information. A compiler on a large
mainframe computer will generally give far more
information as to the nature of the error
encountered. For example, the error message
could read:

1090 LET A=(C*2+F$) `((FG—C) *TH+1))

ERRORS: 1) MISMATC H — STRING VARIABLE F$

NOT ALLOWED
2) LAST CLOSE BRACKET NOT EXPECTED

There is no fundamental reason why such
techniques cannot be used in an interpreter on a
home computer — the cost of the extra ROM
needed to store the routines would be minimal.
But few home computers employ even cursory
error monitoring procedures: most don't even
check the syntax of the code as it is entered.
However, it is often possible to buy additional
ROM chips or plug-in software cartridges that will
extend the range of BASIC commands available,
particularly those related to the development and
de-bugging of programs. These BASIC commands
include:

HELP — prints out the program line and
highlights the exact character position where
program execution terminated. This will usually,
but not always, indicate the source of the syntax
error.

DUMP — prints a list of all variable names and
their contents currently in use by the program.
This is helpful in deducing how far the program
had got in its task before the error occurred.

TRACE — displays (in a window in the corner of
the screen) the line number (or numbers)
currently being executed while the program is
running. This helps the user to trace the flow of the
program, and ensures, among other things that
subroutines are being executed in the desired
order.

Writing programs that allow a computer to
correct human coding errors is, in general, not a
simple task. But in the case of some errors it is
fairly easy. For example, we know that all program
lines have to start with a BASIC keyword (though
some machines will allow you to drop the word
LET). Therefore, if a line begins with PRUNT or
PRO NT, it would be easy to work out that it should
say PRINT. In the Basic Programming course we
have discussed the idea of fuzzy matching
(algorithms for choosing the closest match to any
phrase) and this could be applied to program
keywords as well. Alternatively, the interpreter
could simply include a list of common typing
errors, and their correct equivalents. For safety, it
would be desirable for the computer to check any
alterations it makes with the operator.

But beyond these basic procedures, automatic
correction becomes a great deal more difficult. In


