
C- MACHINE CODE/PART 10

MODES OF ADDRESS

_

The strength and versatility of Assembly
language instructions is enhanced by the
variety of ways in which these instructions
can address memory'. The different ways
consist of direct, indirect and indexed
addressing, and combinations of these. In
this instalment we take a doser look at
modes of addressing in machine code.

Every ASsembly language instruction refers
explicitly or implicitly to the contents of memory,
and since one byte is distinguishable from another
only by its address, every Assembly language
instruction must, therefore, refer to at least one
address. The manner in which an address is
referred to may be direct and obvious, as in LDA
$E349, which means 'load the accumulator with
the contents of the address $E349 1. In this case,
both the accumulator (a byte with a name rather
than a number for its address) and the address
8E349 are mentioned unambiguously, and the
nature of the relationship between them is clear.

On the other hand, the reference to an address
may be much less obvious: HET, meaning 'return
from a subroutine call', is a good example. This
may not seem to refer to an address at all until you
expand it into 'the location address of the next
instruction to be executed is the place where the
last subroutine call was made'. Here, the address
whose contents are to be changed (i.e. the
program counter — the register holding the
address of the next instruction to be executed) is
not mentioned, nor is the address at which its new
contents (i.e. the new location address) are to be
found. These two instructions can be seen as
highly contrasting examples of addressing modes.

In the course so far we have seen instructions in
two kinds of addressing mode: immediate mode,
as in LO A,S45 or ADC #331, and absolute direct
mode, as in STA 858A7 or LD (S696C),A. These may
seem like the *natural' addressing modes,
covering every possible case except the implicit
modes such as RTS or RET, but there are other
possibilities as well. We shall look at these
separately.

ZERO PAGE ADDRESSING
Zero page addressing (also known as short
addressing) is used whenever an instruction refers
to an address in the range $0000 to SOOFF. AM
addresses in this range have a hi-byte of $00, and
therefore lie on page zero of memory. Such
instructions need only two bytes — one byte for
the op-code and one for the lo-byte of the
address. When the CPU detects a single-byte

address at a point where it expects there to be two
bytes, it assumes a hi-byte of $00, and so refers
automatically to page zero. The advantage of this
page zero mode is speed of execution: data on
page zero is accessed significantly faster than data
on any other page precisely because it requires
only a single-byte address.

The Z80 and the 6502 microprocessors differ
greatly in their use of the zero page mode. In
6502 Assembly language, any instruction that
addresses RAM (such as LDA) can be used in the
zero page mode, and all the 256 bytes of zero
page are available to the CPU In Z80 Assembly
language, only one instruction — AST (the 'restart'
or 'reset' instruction) — features the zero page
mode, and it can address only eight specific page
zero locations. Because the RST instruction is so
specific in its addressing, it requires only a single-
byte op-code (the address forming part of the op-
code itself), which makes it very fast in execution.
We will see more of the Z80 RST instruction later
in the course because of the special uses to which
it is put.

It may seem ridiculous to be comparing the
speed of Assembly language instructions when
the execution time of the slowest instruction is
measured in microseconds anyway, but it isn't
difficult to write Assembly language programs in
which saving a micnosecond per instruction
execution can mean the difference between
success and failure. Games programs featuring
animated high-resolution three-dimensional
colour graphics, for example, can involve millions
of instructions per screen operation, and they
must execute these commands as quickly as
possible for the sake of smooth animation.
Shaving a microsecond off one operation
becomes very important when you put that
operation inside a loop and execute it 64,000
times consecutively.

ADDRESSING
Indexed mode is vital to Assembly language
programming since it permits the construction of
array-type data structures. Without such
structures, programs are restricted to addr essing
memory locations individually by address: this is
what we have done with all the programs so far in
the course. Once indexing is possible, however,
far more data can be handled, and more power is
put at the programmer's disposal.

The essential elements of indexed mode are a
base address and an. index. Suppose we wish to
keep a table of data — ASCII character codes, for
example — in consecutive bytes. The base
address of the table is the address of its first byte.

196 THE HOME COMPUTER ADVANCED COURSE

