SIMPLE ARITHMETIC

It is now possible for us to take a detailed
look at several machine code programs that
show how some simple arithmetic is
performed using the 6809 instruction set.
We pay particular attention to signed
arithmetic, and the use of the condition
code register.

At this stage in the course, we can put some
instructions together into a working program,
although we will need to examine some new
instructions and ways of representing data first of
all. We will begin by devising a simple program
that converts a binary coded decimal (BCD)
number into its binary representation.

A binary coded decimal number (see page 168)
is a way of representing a decimal number in
binary form that is particularly useful when
dealing with eight-bit processors. Using this
representation, each digit in a decimal number is
translated into its binary equivalent. The decimal
number 69, for example, is equivalent to the BCD
representation %01101001: the leftmost four bits
(0110) are the binary equivalent of 6, and the
rightmost four bits (1001) are equal to the decimal
9. Thus, using BCD, we get an entirely different
decimal equivalent than we would if we were
converting the binary number %01101001 (it is
equivalent to 105 decimal).

Our convyersion program will need a number of
new instructions; let’s consider these in turn:
® LSR (Logical Shift Right): This shifts every bit of
the operand one place to the right. The rightmost
bit is shifted into the carry bit of the condition code
register of the processor, and a zero is shifted into
the leftmost bit of the operand.

® AND: This logically ANDs each bit of a register
with the corresponding bits of the operand,
leaving the result in the register. This instruction is
most often used to mask certain bits: if a register
contains a one in a bit, then ANDing it with another
bit will copy that second bit into the register; if the
register bit contains a zero, then ANDing it will
always result in a zero. For example, the effect of
ANDing a register value of %00001111 with a given
memory location is to copy the rightmost four bits
only of the location into the register. Thus:

%00001111 Register value

%10110110 AND memory location value

%00000110 Result in register
@ MUL: This MULtiplies the contents of the Aand B
registers, leaving the result in the D register (the 16-
bit register formed from A and B together). Very
few other eight-bit processors support

multiplication as an op-code.

® SWI (SoftWare Interrupt): This is a convenient
way of terminating a machine code program,
returning control to the operating system. We shall
examine this instruction in more detail when we
consider the interrupt system later in the course.
Here is the BCD-to-binary program:

@ Specify value in location counter:
ORG $1000

@ Store BCD 58 in BCONUM and reserve byte at
BINNUM:

BCDNUM FCB %01011000
BINNUM RMB 1

@ [oad BCD 58 into the A register and mask the
lower digit. Store that digit in BINNUM:

STARTLDA BCDNUM
ANDA #%000011M1
STA BINNUM

® [.oad BCD 58 into A accumulator and shift upper
digit (leftmost four bits) rightwards:

SHIFT LSRA
LSRA
LSRA
LSRA

® [oad 10 (decimal) into the B register and
multiply by the contents of A:

MULT LDB #10
MUL

@ The result is 16 bits in the D register, but as this
result cannot be greater than 90 (10 X 9 = 90),
only the lower byte of D is needed. The lower byte
is in the B register — so add its contents to BINNUM
and store the result:

ADDIT ADDB BINNUM
STB BINNUM

® Thus, we have the BCD number in BCONUM and
the binary equivalent stored in BINNUM. We can
finally return to the operating system and end the
source code:

RETURN SWI
END

TWO’S COMPLEMENT

The programming examples we have given so far
in the course have all involved simple arithmetic,
and we shall continue in this vein for a little while
longer. Let’s now look at the problem of sign —by
which we mean positive and negative numbers.

THE HOME COMPUTER ADVANCED COURSE 577

