
EQU13ASCII value of carriage return
character

$3000Address of the input buffer

$0010STRING2 holds the address of

$1000the free space

#STRING1 Address of source string (i.e.
$3000 at first) loaded into X

Address of destination string
(i.e. address stored at
S10,$11) into Y

Y,UTransfer the address of the
length byte into U

#0Store zero at first byte of
destination string

,Y+
,X+Get next character from input

buffer

CRIs it a Return character?

FINISHStop if it is

,Y+ELSE copy it (and)

,UAdd one to the length

LOOPNext character
Return to operating system

CR

LOOP

FINISH

END

STRING1 EQU

STRING2 EQU

ORG

LDX

LDYSTRING2

TFR

LDA

STA

LDA

CM PA

BEG

STA

INC

BRA

SW'

Character
String Copier
•This program copies a
string from the input buffer at
$3000 to the next tree string
space, the address of which is
given at $0010

ways is to use the auto-increment mode. The
instruction:

L DATABLE,X+

will cause the value in X to be automatically
incremented after it has been used. If we have a
table of 16-bit values then we use:

LDATABLE,X++

which causes the X register to be incremented by
two. Our original program loop is now
considerably streamlined:

LOOPLDATABLE,X+

INCCOUNT

LDBCOUNT

CM PB#64

BLTLOOP

Another useful alternative to the original method
we outlined is to step through the table of values in
the reverse order, perhaps using the auto-
decrement mode. This has the advantage that the
final value in the X register is zero, and as auto-
decrement of an index register automatically sets
the flags in the condition code register, we can test
directly for the end of the loop without having to
use a CM P instruction. The same effect can be
obtained by loading the index register with a
negative value and incrementing this until zero is
reached. Every time the auto-increment
instruction is obeyed, it sets the condition code
register flags to show the results of the increment.
If a zero result occurs, for example, the zero flag is
set; if a carry occurs, then the carry flag is set, and
so on.

We should remember, however, our general
rule that it is always best to make tests on the
accumulators only. Also, since most programs are
likely to have some processing between the
increment/decrement instruction and the test
instruction it is unlikely that the condition code
register will remain unchanged between the action
and the test.

If we decide not to step backwards through
the table, it is still a good idea to make the count go
backwards so that we can end the loop at zero. A
point to watch with the auto-decrement
instruction mode is that the decrementing is
performed before the address calculation,
whereas in auto-increment the register is
incremented afterthe address has been calculated.
Thus, if X contains 7 and TABLE begins at $1000,
then the instruction LDA TABLE,X+ will load the
accumulator from address $1007 and then
increment X from 7 to 8. LDA TABLE,-X (note the
minus sign comes before the register name), on
the other hand, will decrement X from 7 to 6 and
then load the accumulator with the value from
address $1006.

Stepping through the table backwards, and
keeping the count in the B register for
convenience, our loop will now be:

LOX#64

LDB#64

LOOP LDATABLE,-X

DECB

BCELOOP

The first of our two example programs shows a
straightforward loop through a table of eight-bit
values, in which we count the number of negative
values. The count in accumulator B is also used as
the offset from a fixed value in X. The second
program shows both the index registers being used
together, with a zero offset. It makes a copy of a
character string from one location (possibly an
input buffer) to another location where it will be
stored. The string is of unknown length (although
it will be less than 255 bytes) and will terminate
with a Return character. When it is stored, the
Return character will be deleted, and a byte
indicating the string's length will be put at the
beginning.

THE HOME COMPUTER ADVANCED COURSE 599

