
APPLICATIONS/ ROBOTICS 

Chorm Le 
The complexity of movement 
and synchronisation required in 
real robotics applications can be 
clearly seen in this section of the 
Ford Sierra assembly line 

Take as an example a car assembly line, on 
which a team of robots works on the cars as they 
pass by. All you want to do is to program the robots 
so that they will assemble the cars in the correct 
manner. However, programming the robots takes 
time, and money is lost each time the production 
line is halted. You might decide to set up a dummy 
assembly line with some brand new robots with 
which to develop the new programs. But this, too, 
is expensive and can easily lead to another snag - 
the problem of robot choreography, which we 
considered earlier in this series. It is vital to ensure 
that robots working together do not interfere with 
each other's movements. This is not just a matter 
of convenience - a large industrial robot capable 
of moving heavy loads could easily damage 
another robot if it should run into it. And it's not 
only the robots that may be damaged - an 

improperly programmed robot that spends its 
time welding car doors shut would soon prove a 
problem! 

The obvious answer is to carry out computer 
simulations of each robot's actions so that the user 
can see how they will interact. This way the cost is 
low and nothing is damaged. Once the simulation 
is complete and everything looks satisfactory, the 
programs that have been developed can easily be 
transferred to the real robots, which can then be 
safely left to carry out their designated tasks. 

In this article, we will demonstrate the principle 
of robot simulation with a program, Robot Arm, 
that simulates a 'pick and place' robot arm with 
two degrees of freedom. It has no sensors, so you 
must guide it yourself, controlling the shoulder 
and elbow joints and the grab mechanism in the 
end effector, in order to pick up an object and then 
place it somewhere else. Additionally, you should 
refer back to the maze-solving program detailed 
on page 722, which demonstrates how a robot 
may be progammed to find its way to the centre of 
a maze. This program is, in effect, a computer 
simulation of how a 'real' robot would attempt to  

reach its goal. It mimics the actions of a robot fitted 
with a simple touch sensor, and it finds the correct 
path by simply advancing into empty spaces until 
it meets a dead end, whereupon it returns to the 
last junction it encountered and then tries a new 
route. This is hardly a sophisticated model, but it 
does show how a computer program can be used 
to simulate a robot's movements. The 'robot' in the 
program obeys a fixed set of rules and 'maps out' 
the environment. If, within the program, the robot 
had direct and immediate access to the positions of 
all the maze components, it would be able to move 
directly to its goal. In our program, it does not have 
this information and so must use a trial and error 
technique. 

Similarly, the Robot Arm program mimics the 
behaviour of a robot that has no sensors at all. This 
program contains a model of the robot's 
environment and a model of the arm itself, and 
you must ensure that these two models will 
interact only as they would in real life. So you 
cannot pick up an object with the arm unless the 
arm is positioned correctly. And you cannot move 
the arm below floor level, as that would be 
impossible if the robot arm was real. Although we 
are using computer graphics, in which one line 
(representing the arm) may easily cross another 
line (the floor), for an accurate simulation it is 
essential that these lines do not cross. And when 
the robot drops an object, that object must not 
remain in its current position - your simulation 
must allow gravitational effects. If this is ignored, 
you would certainly not be able to develop a safe 
simulation of a pick and place robot for handling 
eggs! 

ADDING REALISM 
There are very few limitations on what can be 
achieved using computer simulation - and, in 
most cases, the more complex the simulation is the 
more fascinating it becomes. Such a simulation 
can be even more entertaining than simply playing 
with 'real' robots, for the simple reason that, using 
a simulation, you can design any robot you like; 
programming the correct details of the robot and 
its world can lead to a better understanding of 
robots and of the way in which the physical world 
works. Look again at the Robot Arm program. 
You will see that when the robot drops an object it 
falls to the ground and stays there. To make the 
model even more realistic, the program could be 
altered so that the object accelerates as it falls, thus 
obeying the law of gravity. And perhaps, on hitting 
the ground, it should bounce? The possibilities are 
many, and the program is there for you to adapt, 
adding new and more realistic features to make 
your simulation as lifelike as possible. 

Designing computer simulations can be very 
similar to developing computer games software. 
The big difference is that a simulation must 
represent the real world as accurately as possible. 
Achieving this accuracy may be difficult but, once 
achieved, the simulation can be considerably more 
satisfying than merely playing a computer game. 

0 

0 
>- 

B 

802 THE HOME COMPUTER ADVANCED COURSE 

1L 


