Chapter 9
Sundry Logical and
Arithmetic Operations,
including Multiplication
and Division

6112 DEFine FuNction disB%(pc)

128 LOCal i,j,k,af

51308 1=PEEK{pciMOD 14

614@ j=PEEE(pc+1)DIV &4

0158 k=PEEK{pc+1)MOD &4

5168 pr=potl

6178 IF 1 MOD Z=B THEN

6180 IF k DIV B=! THEN fault=1:RETurn ""

5198 SElect OW

208 =3:1F k=4@ THEN

6218 poepetl

6228 RETurn "DIVUy ., ¥$"khexcon$ (pc-2)bhexcond {pc-114", D743 DIV 2

£238 EMD IF

6248 RETurn "DIVUi.aa"kadr$(k DIV B,k MOD 8,pci¥",D°k(i DIV Z

DIVU is divide unsigned. The 32 bit unsigned number in the
destination data register is divided by the 16 bit unsigned source data
item. If everything works out, the resultis a 16 bit unsigned number in the
low order word of the destination register, and the high order word
contains the remainder. Or, in terms of SuperBASIC's MOD and DIV
operators, the low order word contains the result of DIV and the high
order word contains the result of MOD. Any attempt to divide by zero
causes an immediate TRAP to vector 5, as described in Chapter 6. The
status flags Z and N are set normally according to the value of the 16 bit
DIVresult, Cis cleared, X is unaffected and V indicates overflow; but, as
overflow may be detected part way through the division by the 68008, if
V is set then the register contents and the other condition code flags are
left in a relatively random and meaningless state.

If you are using DIVU with two 16 bit numbers, remember to clear the
high order word of the destination data register otherwise the result will
be incorrect.

79

DIV/MUL Ys source, Dd
T T T T T T
SOURCE SOURCE
1|12 l0fo0 d Ys |1 | 1 |ADDRESSING | REGISTER
MODE NUMBER
1 1 1 | | |
SBCD/ABCD Ds, Dd
T T T T
SBCD
11z 0] 0 d Sl RS0 O] R Lt) S
L 1 VI
SBCD/ABCD —(As),—~(Ad)
T T L
SBCD
1|zl 0] 0 d 11000 0] 1 S
1] 1 1
CMPsize source, Dd
T T T T T T T
SOURCE SOURCE
11011/ 1 d 0 SIZE |ADDRESSING |REGISTER
MODE NUMBER
1 1 1 1 | I |
CMPWA source, Ad
1 T T T il T
SOURCE SOURCE
11011 d WA |1 | 1 |ADDRESSING |REGISTER
MODE NUMBER
1 1 1 | 1 |
CMPM.size (As)+, (Ad)+
j T T 0 = T
I () (5 d | SIZE 01011 S
| | 1] |
EXG Ds, Dd
i T T T
111100 S 1({011]0(0 |0 d
1 1 1 1
EXG As, Ad
T 1 T T
11] I | () S]) L R/ [d
1 | | 1
EXG Ds, Ad
I I W T
] S 8 [1 4 R S P (8 1 0 o T d
1] 1 1
TABLE 9.1 SUNDRY ARITHMETIC INSTRUCTIONS

80

6250 =@:a%="0R.E"
6260 =1:a$="0R.W"
4278 =2:a$="DR.L"
4283 END SElect
6298 RETurn a$%", .., "kadr¥lk DIV B,k HOD B,pc)&*,D°%(i DIV 20

6308 END IF

OR performs a bitwise OR of the source and destination data items,
here the destination is always a data register. Address registers are not
valid data sources. The C and V flags are cleared by the operation, N
and Z are set according to the result, and X is unaffected.

5318 SELect ON j
6328 =3:1F k=hD THENW
6338 pe=pct?

5340 RETurn "DIVE, 8% khexcon$ (pc-Zikhexcon$(pc-11&", D"k (1 DIV 2)

5358 END IF

4368 IF & DIV 8=1 THEN fault=1:RETurn ™"

6378 RETurn “DIVS;,,,"kadr$(k DIV B,k MOD 8,pc)®" D°kLi DIV 2

DIVS is identical in operation to DIVU, except that it treats the
numbers involved as signed numbers rather than unsigned numbers. If
you are dealing with 16 bit numbers you need to use EXT.L on the
destination data register before dividing, to prevent errors due to the
random contents of the high order word.

£3BB =B:IF k<B THEN

£398 RETurn *SBCD,...D7%ER", 0840 DIV 2

5408 END IF

SBCD subtracts a binary coded decimal byte from another binary
coded decimal byte, also subtracting the value of the X condition code
from the result. The C and X flags are set if the operation requires a
borrow from the next (more significant) binary coded decimal byte. The
values of V and N are undefined and meaningless, and Zis cleared if the
result is non-zero but unaffected if the result is zero. Thus SBCD is very
similar in operation to SUBX.B.

5418 IF k{14 THEN

S4Z8 RETurn "SECD, 4, A R{-BYE7) - (A7R0D DIV 2)EM)"

o428 END IF

So, again, the most useful form scans two numbers held in memory
by starting at the least significant byte. X should be cleared and Z set
before starting an extended binary coded decimal subtraction using
SBCD.

81

6448 a$="0R.B"

£458 =1:a$="0R.W"

H4LR =Z:a$="0R.L"

£47Q END SELect

6488 IF k{16 OR k>=38 THEN fault={:RETurp ®*

649@ RETurn a$k®, .., D°%0 DIV 2)&", "kadr${k DIV 8,k MOD &,pc)

6508 END DEFine

This completes the OR command, which can thus operate where its
destination is a data register, or its source is a data register, or the
immediate data form shown in Chapter 4.

disB$ and disC$ are quite similar to dis8$ in organisation but,
unfortunately, | could not find enough similarity to write a common
function, and ended up writing separate versions for speed, both in the
writing and in the operation of the program.

mﬂ.s DEFine Fulction disB${pc)

5328 LOCal 1,i,k,a$

6338 1=PEEK(pcIMOD 14

6540 J=FEEK (pc+1)DIV 44

£35@ k=PEEK (pc+1)MOD &4

6568 prepcti

6578 IF 1 WOD 2=@ THEW

4588 SElect ON j

£598 =3:1F k=68 THEN

6488 pr=pr+i

618 RETurn "CHP.W,,, 48" khexcons (pc-2) khexcon$ (pc-114" ,A"&{i DIV

£620 END IF

6630 RETurn "CMP.W,.a"kadr${ k DIV B,k MOD B,pci%®,A"%(i DIV 2

CMP compares two items by subtracting the source :03 the
destination and setting the C, V, N and Z flags according to the resuilt.

Xis unaffected, and the result is discarded rather than being placed
in the destination.

664@ =0:IF k DIV B=1 THEN fault=1:RETurp **

6638 a$="CHP.B"

Bb6R =1:a$="CHP.W"

ALTR =Z:a%="CHP.L"

5488 END SELect

6578 RETurn a$b” ;. "%adré(k DIV B,k MOD B,pci&",D"%{i DIV 2)

5708 END IF

A71@ SELect ON j

E72@ =3:1F k=68 THEK

82

G730 pc=prtd

6748 RETurn "CMP.L, . 88 khexcon${pc-4) khexcon$ (pc-JiShescon$ (pc-2) khe
xcond(po-138Y ARG DIV 2)

6758 END IF

5768 RETurn "CHP.L,.a"kadr$(k DIV 8,k MOD B,pci&”,A"%0 DIV D)

You are only allowed to compare things with data or address
registers, or using the variation of CMP in Chapter 4, you can compare
immediate data with any addressable item.

6778 =B:a$="B"

6788 =1:a$=""

6778 =Z:a$="L"

5398 END SEiect

6818 IF k=58 THEN fault=1;RETurn **

6878 IF k DIV B=1 THEN RETurn "CHPM, “La$k®,, (A" {k-B}!

250"

CMPM stands for compare multiple or company memory and
allows two strings, or binary coded decimal numbers, or extended
numbers to be compared with each other starting at the most significant
end. Flags are set as for CMP rather than as for an extended arithmetic
command; so, X is unaffected, and Z should be tested after every
comparison, rather than at the end of the string or number.

6338 RETurn "EDR."%a$t",,,D"%(i DIV 2)&°,"kadr${k DIV B,k WOD 8,pc)

L84 END DEFine

EOR performs an Exclusive OR with a data register as source and
another data register or memory item as destination. The C and V flags
are cleared, N and Z are set according to the result, and X is unaffected.

£858 DEFine FuMction disCHipc)

£868 LOCal 1,3,k a$

6878 1=PEEK{pc)HWOD i&

4830 j=PEEK(pct+l) DIV &4

6898 k=PEEK(pc+l) HOD 44

6580 pc=pc+?

6918 IF 1 MOD 2=8 THEN

692@ IF k DIV B=1 THEN fault=1:RETurn "°

6930 SElect DN j

8949 =3:1F k=48 THEN

6958 po=pctl

5968 RETurn "MULU, ., 8¢ "khexcon$(pc-2) &hexcon${pc-11E" D {1 DIV 2}
£97@ END

6988 RETurn "MULU, ... "kadr${k DIV B,k MOD 8,pc)¥®,D k(i DIV 2)

e, (ARG DIV

83

MULU performs an unsigned multiplication of the 16 bit source data
with the low order word of the destination data register, placing the 32 bit
result in the destination data register. Overflow is not possible, so the V
and C flags are cleared. N and Z are set normally according to the 32 bit
result, and X is unaffected.

6998 =B:a$="AND.B"

7838 =1:3$="AND. 4"

7018 =Z2:a$="AND.L"

7828 END SElect

7038 RETurn a#h®,,."%adré{k DIV 8,k MDD B,pc)&",D¥"k{i DIV 2

7048 END IF

AND performs a bitwise AND of source and destination data items,
clearing the C and V flags, setting N and Z according to the result and
leaving X unaffected. The various forms of AND mirror the available
forms of OR which we have already seen.

7858 SELect ON j

7968 =B:IF k{8 THEN RETurn “ABCD.,,,D"%kE",D"%{i DIV 2
7878 IF k{16 THEW RETurn "ABCD..s,-(A"k{k-814"),-(A"R{1 DIV Z21&")®
OR.size source, Dd
T T T T T T T
SOURCE SOURCE
11000 d (0]} SIZE ADDRESSING | REGISTER
. _ { MODE | NUMBER
OR:.size Ds, destination
_ : _ DESTINATION | DESTINATION
O] L L I R S 1 SIZE ADDRESSING | REGISTER
_ _ ! MODE NUMBER
EOR.size Ds, destination
= ks _ DESTINATION | DESTINATION
1@ | A1 S i SIZE ADDRESSING | REGISTER
| | I MODE | NUMBER
AND.size source, Dd
T T T T T T T
SOURCE SOURCE
1111010 d 0 SIZE ADDRESSING | REGISTER
_ : _ MODE NUMBER
AND.size Ds, destination
e : DESTINATION | DESTINATION
111 (0|0 S 1 SIZE ADDRESSING | REGISTER
ity | mMope | NumseR

TABLE 9.2 SUNDRY LOGICAL INSTRUCTIONS

84

ABCD, add binary coded decimal, mirrors SBCD, adding together
two binary coded decimal bytes and the value of the X flag, setting the C
and X flags according to the result, leaving N and V in an undefined
state, clearing Z if the result is non-zero, but leaving it unaffected
otherwise.

7EBR a$="AND.B®

7898 =1:1F k<B THEN RETurn "EXGiasasD"%(i DIV Z1&",D"EE

7188 TF k{14 THEN RETurn “EXGi,aasfA"%(1 DIV 208" A"N(E-8)

EXG exchanges the full 32 bit contents of two registers without
affecting any condition code flags.

7118 a$="AND.W"

7128 =2:1F k<B THEN fault=1:RETurn *"

7138 IF k{ih THEN RETurn "EXBiaaaaDt&00 DIV 2)R° A% (k-B)

This is, perhaps, the most useful version of EXG, allowing the
exchanging of a data register and an address register. Assemblers
often allow the address register to be named as the source, but such
commands are translated to the code above where the data register is
nominally the source. As the operation works symmetrically on source
and destination, this does not matter.

7148 a$="AND.L"

7158 =1:1F k=40 THEN

7168 po=pctl

7178 RETurn "HULS.s..%$"khexcond (pc-2)khexcon$ (pc-1147,0°% 01 DIV 2

718@ END IF

7198 IF k DIV B=1 THEN fault=1:RETurn "°

72008 RETurn "MULSu.a."kadr$ik DIV 8,k MOD 8,pc)d" DVE41 DIV D)

7218 END SELect

MULS is identical to MULU, except that it treats the source data items
as being signed numbers.

7228 IF k=538 THEN fault=1:RETurpn *"

7230 RETurn a$h",,,D"%(DIV 23", "kadr$ik DIV 8,k HOD B,pc)

7248 END DEFine

These lines complete the decoding of AND instructions where the
source is a data register and the destination is a memory item, whose
various different sized versions were scattered through the last
SELection.

85

Chapter 10
Shifts and Rotates

A complicated collection of shifting and rotating operations are fitted
into disE$. The operations either work directly on a 16 bit word in
memory, when the data is moved by just one bit, or they work on the
contents of a data register. When the operations work on data registers,
a byte, word or longword can be affected and the distance the item is
moved can be specified as immediate data in the range 1 to 8, or by the
contents of a data register, when the value is taken MOD 64.

7258 DEFine Fulction disE$ipc)

7268 LOCal 1,5,k a8

7278 i=PEEK{pc)HOD {4

7280 j=PEEK({pc+1)DIV &4

7298 k=PEEK (pc+iINOD &4
7380 pc=pc+2
7318 SELect ON j

7320 =1 IF k{16 DR k=58 THEN fault=1:RETurn "

7330 RETurn shift$(",,",itkadr$dk DIV 8,k MOD 8,pc)

When a word in memory is shifted, program counter relative
addressing cannot be used.

7340 =@:a%=".8"

350 =lrad=".¥"

7368 =21a$=".L"

7370 END SElect

7388 j=k DIV B MDD 4%2+i MOD 2

In the data register movement versions of the shift commands, the
type of shift is specified by different bits in the instruction to those used
when shifting memory words. The above calculation picks up the
separate bits and recombines them to form a bit pattern which correctly
reflects the types of shift to be decoded by shift$.

87

Shift Bi.size #q, Dd

[T [1Jofa mpe [s[szc[a] sim]| , d |
Shift Bi.size Dn, Dd _ _ _

Ol o] Tn; [[se[i]om] , d |
Shift B4 destination

T

DESTINATION | DESTINATON
111 (1110 |0 | sHrFr [BL|1 |1 |ADDRESSING REGISTER

| MODE | NUMBER
swFt. [0]0] = s

O] -

(1]o] = Rox

T - o

TABLE 10.1 SHIFTS AND ROTATES

7398 IF k{32 THEN

7408 TF 142 THEW i=1%

7418 RETurn shift$(a%, 16 #°%00 DIV 20%",D"&{k HOL B)

7428 END IF

7438 RETurn shift$(a$, DEDRO DIV 2087, D°kik HOD)

7844Q END DEFine

A zero bit pattern for the three bits of immediate data indicates a shift
by 8 bits in the same way that ADDQ and SUBQ can add and subtract a
value of 8.

7458 DEFine FuMetion shift#{a¥,n}

75468 SElect ON n

7478 =0:RETurn "ASR*ha$h",.."

ASR stands for arithmetic shift right. Arithmetic shifts are designed to
work on signed numbers, trying to maintain the sign of the operand,; so,
the sign bit is copied back into its old position as the data is shifted right.
The last bit shifted out of the least significant bit of the item is copied into
both C and X. The flags N and Z are set according to the value of the
result. As overflow cannot occur, V is cleared by the operation.

88

7488 =1:RETurn "RSL7Ra$d" 4"

ASL is arithmetic shift left. Bits introduced at the least significant end
of the operand are zero. C and X keep a copy of the last bit shifted out of
the operand, N and Z are set according to the value of the result, and V is
set if the sign changes, recording any signed arithmetic overflow.

7498 =2:RETurn "LSR"ka$k",,,"

LSR is logical shift right. This is similar to ASR, but the new bits
introduced at the left of the item are always zero, rather than copies of
the sign bit. This means that the N flag is always cleared by the
operation. All other flags are set as for ASR.

7508 =I:RETurn "L3L"ka$k",,,"

LSL, logical shift left, is almost identical with ASL with zero bits being
introduced from the right, except that V is always cleared by the
operation, as it is not considered to be dealing with numeric quantities.

7518 =4:RETurn "ROXR"%a$&",,"

ROXR is rotate extended right. The word extended in the name
implies that the X bit forms an extension of the item being rotated, linking
the most and least significant bits of the item. Bits introduced at the left of
the item come from X, and bits leaving the right go into X. The value of C
copies X, N and Z are set normally, and V is always cleared.

A ROXR by 9 bits would be needed to return a byte item to its original
position, 17 for a word, 33 for a longword.

752@ =5:RETurn "ROVL"ka$h®,,"

ROXL, rotate extended left, is the mirror image of ROXR, and its
condition code flags are set according to the same rules as ROXR.

7338 =h:RETurn "ROR"%ask",,."

ROR, rotate right, does not affect the X bit, nor is it affected by the X
bit. Instead, bits leaving the right end of the item immediately reappear
at the left end, forming the bit that is introduced there. C records the
value of the last bit transferred from the extreme right to the extreme left.
N and Z are set according to the value of the result, and V is cleared.

7348 =7:RETurn "ROL"%a$k",,."

ROL, rotate left, is the mirror image of ROR, and it sets the condition
code flags in the same manner, X is unaffected, C records the last bit
transferred from one end to the other, this time from extreme left to
extreme right, N and Z are set according to the value, and V is cleared.

89

A

ASR mAT;

\ 4

ASL

7 N

A

7 N

ROXR

Y

59|

o

=

[
\ 4

A
A

\4

Agnvanuﬁﬂ"%?“é%"%?“éév%?

ROL ﬂ =

TABLE 10.2 CARRY AND EXTENDED ARITHMETIC BITS
SHIFTED AND ROTATED

90

7558 =REMAINDER :fault=1:RETurp *°

7568 END SElect

7572 END DEFine

7588 REMark - End of Disassembler

If you have not been trying out the disassembler, or its individual
functions, as you have typed it in, now is the time to try it out. Perhaps the
easiest place to start is with the first 8 bytes of the ROM, which define the
initial stack pointer and program counter contents. With this information
you can follow the initialisation routines, such as the QL's extensive
memory testing process that it goes through before any other action.
Whatever you decide to disassemble, | wish you good luck in
deciphering what the code does.

91

Chapter 11
Practical Use of the -
Assembler

When you run the assembler listed in Appendix D it shows a status
page, and in the channel @ area asks you to key a letter to select
“Assemble”, “Edit” or “Load code”. Figure 11.1 shows the layout. As
you have not yet written any 680@@ programs, the only sensible choice is
to press <E> for “Edit”. The other choices can work from files on
microdrive so, if a friend had given you copies of programs he had
written with this assembler, you could make the other choices.

Again, the editor shows a menu in the channel @ window. Thistime it is
usual to press <A> for “Append”, to add program lines to the end of
any you typed in before. getline asks you for the “label”, “command”
and “parameters” in turn for each line of program. To leave the label
blank, simply press <ENTER>. To leave this line entry mode, enter a
blank command by pressing <ENTER> when asked for a “command”.
Try typing a few lines of program that might come to mind from the

68088 Assembler

8 1984 Alan Giles - Uersion AH

Current prograoam size @8 L ines
Code start @

Space reserved 0 bytes

Space used @ bytes

Spare space 21144 bytes

A=Rssemble E=Edit L=Load code

FIGURE 11.1

93

disassembler discussion. Perhaps you might type something like:
start movem.! dB-d1/a@,-(sp)
pove.l #$20008,a0
move HBI91,d@
moveg #@,dl
loop sove.l dl,(a@i+
dora d@,loop
movem,] {a7l+,d@-di/a@
rts
which, according to the QL memory map, ought to clear the screen
memory by storing 8 192 longword zeroes in the appropriate locations.
Note that the names “sp” and “a7" are interchangeable, and that you
can use lower case letters rather than capital letters if you prefer to do
so. Figure 11.2 shows the screen at this point.

Press <ENTER>, <ENTER> to leave line entry mode, then press
<X>toleave editor and choose <A> to assemble the current program.
For many of the questions the program asks, just pressing <ENTER>
will be taken as the normally expected answer. The program should
assemble without any trouble. However, do not run it yet, as we have left
some problems to overcome.

feaoe start movem.! d6-di/aB,-(sp)

8061 move.|l $#%20000,a0
86082 move #8191 ,d0

8083 moveq #6,d1

fe04 loop move.l di,(aB)+

80085 dbra dé, loop

80066 movem.l (aZ)+,d6-di/a0
8867 rts

0008 + END

A=Append D=Delete I=Insert L=Load
M=Merge R=Rep lace S=Sauve X=eXit

FIGURE 11.2

94

You may have noticed in the assembler listing that the procedure usr,
which is called in line 640, is never actually defined. This is due to a bug
in version “JM" and earlier versions of the QL ROM.

We would like to use CALL in place of usr, and the RTS at the end of
the program we typed in reflects this desire, but although CALL works
when there is only a small program in the QL's memory, such as during
loading of one of the Psion packages, it fails when a program as large as
the assembler is in memory, apparently CALLing the wrong address
and crashing. If you have SAVEd copies of both the assembler and the
short assembly language program you wrote, you could add the lines:

78002 DEFine PROCedure usriaddress)

28818 CALL address

22978 END DEFine
and then reRUN the assembler, and reLOAD the assembly language
program, or assemble it directly from its microdrive file. In the latter
case, you tell the computer that you have finished the list of files to be
assembled by just pressing <ENTER> when asked for the next drive
number. Once assembled, you can try RUNning the program, to see if
your QL has the CALL bug.

If the program works, it will clear the screen and then give the error
message bad parameter. This is because of something | forgot to
mention about CALL, it takes the value in D@ when you RTS as an error
code, and on entry CALL has the code for bad parameter in DO so that
this is an easy error message for your program to return. The error codes
are usually negative, minus 1 means not complete, minus 2 means
invalid job and so on, zero means no error, and positive numbers are
taken as addresses pointing to your own error message text, which
should consist of a word giving the length of the following message in
bytes, followed by the message text. So, you might like to add
MOVEQ #00,D0 just before the RTS in our screen clearing program.

If CALL failed, there are various ways of overcoming the problem.
The simplest method is to remove the assembler from memory before
manually typing your CALL command. You could add the line:

20810 HEW
in place of the previous version and, provided you remember the
address where your program is assembled, you will be able to CALL it
yourself. This approach also allows you to pass parameters to your
program, as indicated in the QL keyword manual.

You can pass up to thirteen parameters to your machine code

95

program by listing them after the address in a CALL cdmmand,
separated by commas. The first parameter is placed in D1 as a 32 bit
signed number, and subsequent parameters are placed in D2to D7 and
then A0 to A5. As we saw, D0 has a special use as the error code, A7 is
the stack pointer, and A6 seems to be used to point to SuperBASIC's
system variables.

However, this NEWIing of the assembler is not a very neat approach,
as the reloading of the assembler takes quite a while, due to the time
taken to convert the textual form of the program, as stored on
microdrive, into the internal representation used by SuperBASIC to
enable the assembler to run quickly.

It is possible to define your own machine code procedures for use on
the QL, and the following program, written by Dr. lan Logan, defines a
machine code command USR. This command is a simplified version of
CALL, which takes no parameters apart from the routine address.

122 a=RESPR(6B):RESTORE

112 FOR n=@ 70 &7

128 READ viPOKE atn,v

138 END FOR n

142 DATA 47,250,,8,52,128,1,16,78,212

138 DATA @,1,8,12,3,85,83,82,8,0

168 DATA ©,2,8,8,75,235,6,8,52,120

178 DATA 1,24,78,146,36,118,152,R,72,231

188 DATA 235,254,47,250,0,20,34,143,76,145

19@ DATA &7,250,0,1Z,46,81,76,223,127,255

200 DATA {12.8,78,117,8,0,2,0

218 CALL a

228 LRUN mdvl_ase

This program defines the command USR and then loads the
assembler into memory, from the file mdvi_—asm. The assembler has to
be loaded as a separate program after USR is defined in order that the
program line which invokes USR does invoke the machine code
procedure rather than a SuperBASIC procedure. This program also has
the advantage of being small enough for CALL itself to work.

The machine code contained in the DATA statements of the program
is the assembled version of the following:

start lea sr,al
move.w $118,a2
isp (a2}
usr cow
dc.w 12

96

de.b 3

de.b "USR"

dc.w 0,8,8
code lea g{a3},ad

rove.w $118,a%

jsr {aZ}

mave.l @{ab,al.li,az
movens.l d@-d7/a@-ab,-{a7)

lea store,al
eove.l a7, {al}
jsr {aZ

lea store,al

move.l (al},al

naven, 1 {a7)+,dB-47/a-ad
moveq #@,dB

rts

store dc.l 2

The routine start simply adds the table usr to the table of SuperBASIC
procedures, causing the QL to invoke the routine code whenever USR is
used. This routine takes the parameter to USR, which is a floating point
number, converts it to a 32 bit number and calls the routine at that
address, being careful to save all the registers, even the stack pointer, to
ensure that the return to SuperBASIC is safely accomplished. You may
like to disassemble the routines addressed by the words in locations
$110 and $118 to discover how they work.

Another way to overcome the CALL problem would be to use the
remaining SuperBASIC command which can invoke machine code
routines, namely EXEC. EXEC always needs the machine code
program to be specially saved in a microdrive file. If we return to the
SuperBASIC routine usr, we could replace line 20010 by:

20818 EXEC_W mdvi_temp
To do this successfully, we also need to add:

12845 SEYEC mdvl_tesp,codeaddr,codesize,codespace-codesize

Note that we use EXEC__W rather than plain EXEC, this means that
SuperBASIC waits for the machine code program to finish before
carrying on. Otherwise, if we used EXEC by itself, both programs would
run on the QL time-sharing the available processing power. This would
usually be quite confusing, as both programs might write conflicting
instructions on the screen but, if carefully controlled, it can provide a
useful feature.

97

One problem with EXEC is that you cannot RTS from a job created by
EXEC, as it is a separate job and has nowhere to return to. Instead, you
need to tell QDOS to terminate the job, and to do this you might add the
following code to the beginning of a routine which works with CALL.:

bsr.s start

pove.l dB,d3

moveq ¥-1,dl

moveg #3,d0

trap ¥l
provided the CALLed routine starts with the label start. Note that the
error code from a job is passed to QDOS in D3 rather than DO.

Separate jobs also use separate stack space, so you should ensure
that you specify enough spare bytes to more than cope with the space
that you need when you assemble a program.

To convert fully to using EXEC rather than CALL, you will need to
change lines 580 and 710 in the assembler to use EXEC and SEXEC
rather than LBYTES and SBYTES, and you might like to replace line 130
by a line which sets up prog$ as our five lines of QDOS job removing
code, perhaps by loading them from microdrive.

When a job is started by EXEC the values of A4, A5 and A6 are seton
entry as follows:

(A6) points to the first byte of code, the start of the area reserved for the
program.

(A6, A4) points to the first byte available for data, the first byte beyond
the assembled program.

(A6, A5) points to the last byte available for data, which is also the first
byte used by the stack in its descent from the top of the data area, the
stack already contains a longword zero as the last item on entry to your
program.)

Figure 11.3 shows a listing of an alternative procedure usr which
allows you to choose whether to use CALL or EXEC__W.

Another change you might like to make to the assembler, if you have
a printer, is to divert the assembly listing output to your printer by
OPENing a channel, say channel 5, to it and altering the PRINT
statements from line 12700 onwards to use channel 5 in place of the
default channel.

One thing to watch out for, if you start writing long assembly language
programs, is the assembler running out of memory. However, if this
does happen, the facility allowing you to perform a combined assembly
from a number of files on microdrive should help. When you run out of
memory, simply save what program you have already written and start

98

208088 DEFine PROCedure usr{address)

20010 CLS:CLS#@:C51IE 2,8

28020 PRINT "This,is,where,we,have,probless, We® ! "ought,to,be,able,to
JCALL the,machine” "rade,routine, but,this tends, to™ ! "erash,if,
the,Asceabler,is,still,in®! "memory. 450, choose,your soption:-*

20838 PRINT \\"1,-,Try.CALL sanyway "3\ "2, - NEW,and, then ,CALL manual 1y®
\W"34-sUse SEXEC,and (EXEC_W*

20842 PRINT \\"CALLed,routines,should,set 0@,tc,B" ! "before,returning,
usingRTS. "\\"EXECuted,routines,should,set, DB, to,5,01,to0,-1,and
2030, 8 before returning” ! "using, TRAP, ¥1.°

70050 a$=INKEY$(-1)

20868 a="8"%ad

20878 SEiect ON a

20088 =1:CALL address

20090 =2:NEW

20108 =3: INFUT#R;\"Drive,number " 'd$\"File,nase” 'nape$:d="0"%d$: IF d=8@

THEN RETurn

20118 CLS#: INPUT#B;\"Data,sizesneeded, including,stack™! "space,and,

fyextrabytec:®datasize$idatasize="0"4datasizes

20128 DELETE “mdv"%d%” _"knamef

28138 SEXEC "mdv"hd%® “kname$,codeaddr,codesize,datasize

22148 EXEC W "mdv"id%"_"kname$

28158 END SELect

28158 END DEFine

FIGURE 11.3

afresh with the rest of the program. When it comes to actually
assembling all the files together, the assembler will even manage to
resolve references to labels in different files; so your program size limit
now comes when all your microdrives are full of files. After that point, to
produce larger programs, you will have to develop programs in
separate modules without any cross module label resolution.

Your task now is to become accustomed to using the various 68000
commands, and | would suggest that you might go through the list
checking that each does what you expect. The 68008 is a challenging
processor with a lot of clever features, and | am sure you will have a lot of
pleasure writing programs for it.

99

