
PART 11 /MACHINE COD f .._ 1*
Relative Jumps
Most of the branch
instructions, such as BCS
(meaning 'branch if carry flag
is set'), JR NZ (meaning
'tranch if the accumulator is
non-zero'), act according to
tre condition of the processor
status register, and use the
relative jump mode in
redirecting the flow of control
through the program. The
alternative is the absolute
jump.
Ir the examp e, the BCS $01

irstruction always causes a
relative jump of one byte
forwarc (when it causes a

jump at all, that is; it's
conditional on the state of the
carry flag) no matter what the
location address at which the
machine coda resides. Hare,
the BCS S01 instruction is

a ways followed by the INX

instruction, itself only a
s ngle-byte instruc:ion; when
the carry flag is set, therefore,
BCS will cause the INX

instruction to be skipped.

Absolute Jumps

In this example, the JP
S65A2 instruction cause; an
unconcitional jump whenever
it is encountered. l:s effect is
to redirect program execution
to the address which forms
its operand — S65A2 here.
No testing is done, and the
location address of the
instruction a: the time of
execution is iot significant;
program execution always
continues from the specified
address.
Both jump modes have
advantages and
disadvantages, but the most
important criterion in
choosing between a relative
jump or an absolute jump is
relocatability: it's quite
common in Assembly
langua)e programming to
write a routine and assemble
it at one ORG address, then
re-use it in the same form but
with a Different ORG value. If
all the jumps in the routine
are relative, then changing
tie location addresses of the
instructions will not matter at
all, and the program will flow
smoothly along its intended
paths; if any of the jumps is

absolute, however, when the
routine is assembled at a
different ORG. the jumps will

still send control to the
specified address, which may
now have no significance for
the routine. Relative jurrps
are relbcatable, absolute
jumps are not.

to-byte of IX as the loop counter. The instruction
LD jX,S5EO0 puts the base address, S5EOO, into the
IX register, so the to-byte of IX will contain S00. The
peculiar-looking instruction LD (IX+S22),A means
add the address contained in IX to S22, and store
the contents of the accumulator at the address thus
formed'. Since IX is initalised to S5E00, and is
subsequently incremented at every loop
interation, the starting value of the accumulator
will be stored at $5E22, the next value at S5E23, and
so on. Meanwhile the to-byte of IX records the

Exercises
There are many important and possibly puzzling,
points ii this instalment, and only experience of
using the new acdressing modes and instructions
will make you fully understand them.

Use the CHAMP assembler package to assemble
and SAVE the various program fragments in this
instalment. When you execute a fragment, use the
, debug , mode to examine the memory locations that
should be affected. It's a good idea always to initialise
these locations with a recognisable constant — SFF,
for instance — before execution, so that afterwards
you can tell whether memory has been affected by
the program. You can use the 'debug , Alter
command to do this. or even the debug Move
command.
Remember, as always, that the location addresses
given in the program are for example only, and that
you must choose addresses suitable for your
machine.

The conditional branch instructions, as we haveseen,
depend on the contents of the processor status
register. One reason for adding the binary display
option to the Monitor program (see pages 118 and
198) was to enable you to inspect the contents of the
PSR before and after an instruction is executed, and
observe the changes in the flags. There is no single
ins:ruction in either 6502 or Z8C Assembly language
to store the PSR contents, so we must use these
commands:

Z80

3E00 F5 PUSH AF
3E01 F5 PUSH AF
3E02 E1 POP HL
3E03 22 to hi LD (STGREI),HL
3EO6 F1 POP AF

6502

3E0048 PHA
3EO1 38 PHP
3E0248 PHA
3E0308 PHP
3E0468 PLA
3E05 8D lo hi STA STORE1
3E0868 PLA
3E09 8D lo' hi' STA (1+STOREI)
3E0C 28 PLP
3E0D 68 PLA

number of loop iterations, and is finally stored at
S5E20 when the loop terminates. The LD (IX-$22),A
instruction here is in the absolute indirect indexed
addressing mode, which is rather more
complicated than the 6502 version but much more
powerful.

We have now looked at the Assembly language
loop and array structures in some detail. These are
both extremely helpful machine code
programming techniques. In the next instalment
of the course, we'll put them both to work.

Loading And Saving CHAMP

For convenience and security you should copy
CHAMP onto another tape, and then remove the
write-protect tabs from the original and the copy. In
the following instructions, the LOAD instructions
refer to the CHAMP tape, and SAVE refers to the copy
tape:
BBC Model B
1) LOAD"CHAMP"
2) SAVE"CHAMP" : RUN : Quit to BASIC
3) "SAVE"CHAMP MIC' 1000 , 4600

Commodore 64
1) LOAD"CHAMP"
2) SAVE"CHAMP" : RUN : enter <debug> mode
3) Hit [w][ret], followed by [s] for SAVE
4) Start address 1000; end address 4600; filename
"CHAMP M!C'

Spectrum
1) LOAD"CHAMP"
2) Quit to BASIC: SAVE "CHAMP" LINE 1
3) SAVE "CHAMP M/C" CODE 27000,9231

This sequence of instruct ons will cause the current
contents of the PSR to be stored in tte byte addressed
bySTORE1(anaddressappropriatetoyourmachine).
while the accumulator contents will be stored at
(1+STORE1). To use these instructions, simply insert
them as a block before and after the program
instruction whose effect you wish to observe. You
must remember. however, to add two to the value of
STORE1 every time you insert this block. When you've
executed the program, you can use the Monitor to
display the section of memory where you've stored the

various contents of the PSR and the accumulator.
It may occur to you thatthis blockshould betreatad

as a subroutine rather than repeatedly entering it
where it is required. There is an Assembly language
equivalent of BASIC's GOSUB, out using it here would
complicate matters since it uses the stack, and this
would interfere with the Clock's use of the same list
(PL.A. PUSH, PHP, etc. are all stack manipu ations.
which will be more fully explained later). You may
notice the difference in length between the 780 and
6502 code: the Z80's two-byte registers and
associated instructions are responsible for this
variation.

THE HOME CON+PU;TER ADVANCED CVJKSL 219

