
PART 7/MACH E CODE'

MEMORY SPACE

At this stage in the course, we look at ways
of finding or reserving space in memory to
store our machine code programs. We also
take our first look at how we can perform a
simple arithmetic task by using machine
code instructions to manipulate the
contents of the accumulator register in the
Central Processing Unit.

In the last instalment of the Machine Code
course, we developed a very simple Assembly
language program, translated (assembled) it into
machine code, loaded it into memory and
executed it. We used the Monitor program on
page 118 for the latter two tasks. If the program
was a more sophisticated package containing an
assembler, we could have used it for assembling
our machine code program as well. At this stage
in the course, it's no great hardship to do the
assembly by hand — indeed, it's very educational.
But once you've grasped the principles of the
process, and as your Assembly language
programs get longer, there won't be any point in
concerning yourself with the actual machine code
translation. In fact, with larger programs.
assembling by hand gets very tedious, and is

prone to error. Consequently, when you reach this
stage in learning machine code, you may want to
acquire an assembler program suitable for your
machine.

There were many significant points about using
the short machine code program that we gave
(see page 117). We used one of the CPU registers
to manipulate memory, we had to decide where in
memory to store the machine code, and we
caused the microprocessor to execute it. These
are all aspects of Assembly language
programming that particularly puzzle a beginner,
and it's worth looking at them more closely. Let's
start with the question of where to store the
machine code.

To the CPU the only difference between one
byte of memory and the next is whether they're
read-write memory (RAM), or read-only
memory (ROM). ROM chips contain system
programs and data that must be protected from
accidental or deliberate overwriting, and
therefore can only be read. ROM can't be written
to, so we can't load a machine code program into
ROM. Those areas of memory apart, there's
theoretically nothing to stop us loading a program
into any other part of memory, but there are
practical considerations that prevent us using
some areas.

The CPU uses certain sections of RAM for

temporary storage in the course of its operations,
and if we load a program there, then either it will

simply be corrupted by the CPU's overwriting it,
or (and this is more likely) the CPU will read our
machine code as if it were some of its own data.
The operating system also uses large parts of
RAlvi for storing its working data, and for
running the computer system. Loading machine
code programs (or anything else for that matter)
into any of these areas would be unwise or
impossible for the same reasons that prohibit use
of the CPU's workspace. Furthermore, BASIC

programs can take up all the remaining RAM -
partly as program text and partly as variable
storage areas. Once again, it's unwise to tamper
with these areas, and so the programmer

j
CONTROL Bus

I/O 1
RAM r ROM CPU

Small System

U7

 Architecture
A typical computer system, in its most schematic form, comprises memory and a CPU. The former is
made up of ROM chips (containing system programs), RAM chips, and specialist chips dedicated to
input/output operatiors.

Data and cortrol signalsflow into and out of the CPU and arcund the system ahng buses. These
are routes — very similar to • ibbon cablfs — which can carry a tyte or more of data at a time. These
buses may be uni-directional like the address ous, which only transmits in one direction, or bi-
directional like the data bus, which can t'ansmit in either directicn. The control buscarries switching
information around the system, opening and closing logic gatesto direct theflow of data. The
address bus carries a 16 -bit address iron the CPU tc select one byte o memory, allowing data to flow
along the eight-bit data bus into or out of the byte

THE HOME COMPUTER ADVANCED COURSE 135


