
WGO/cOMTtSCNCE

REPEAT PERFORMANCE

This is the final instalment in the tutorial
section of our series on WGO programming.
Here we show you how to add new control
structures to the language, and explain how
to write procedures that can themselves
write procedures.

The LOGO primitive RUN takes alist as its input, and
causes this list to be executed just as if it were a line
of a procedure. This can be used to add new
control structures to the language as and when
they are required. So we could define a WHILE
procedure as follows:

TO WHILE CONDITION ACTION
IF NOT (RUN : CONDITION) THEN STOP
RUN :ACTION
WHILE CONDITION ACTION

END

Here's an example of how we could use it. POWER
prints all the powers of its input below 1000:

IOPOWER:X
MAKE "P :X
WHILE [:P < 1000] [PRINT :P MAKE "P :P * X]

END

Control structures, such as WHILE, REPEAT and
FOR, are common in other languages, but they are
not really necessary in woo. A more natural way
to write POWER in woo would be:

TO POWER :P
IF NOT :P < 1000 THEN STOP
PRINT:P
POWER P* :P

END

REPEAT is provided in all versions of woo, but it is
not strictly necessary, since you could define an
equivalent word, REPT, in the following way:

TOREPT:N0:LIST
IF:NO=OTHEN STOP
RUN LIST
REPT:NO-1 LIST

END

RUN is an extremely useful primitive for more
advanced woo work. A program can assemble a
list and then pass it to RUN to have it obeyed. We'll
see an example of this shortly.

TAKING PROCEDURES APART
First of all we must define a procedure to draw a
triangle in the usual way:

TOTRI
FD 50 FIT 120 FD 50

FIT 120 FD 50 RI 120
END

Now type PRINT TEXT "TRI. The result should be:

The text of the procedure is given as a list of lists,
where each 'inner' list is one line of the procedure.
To see why there is an empty list at the start, define
this replacement for addition:

TO ADD :A:B
PRINT :A+ :B

END

Now PRINT TEXT 'ADD will give:

[:A :B][PRINT :A+ :B1

Clearly, the first list contains the inputs for the
procedure. So TEXT enables us to get inside a
procedure and find out what is there. DEFINE, on
the other hand, does the opposite: it lets us define
a procedure as a list of lists without having to go
into the editor. Now try DEFINE "L [[:A] [FD :A] [RT
90] [FD :A /2]] and then run L using, for example, L
30. Using DEFINE in immediate mode in this way
has no advantages over using the editor. The
advantage that DEFINE gives us is the ability of one
procedure to create another procedure.

GROWING
We are now going to develop a small system for
investigating growth. The basic commands in our
system are ASK, which selects the shape we will
deal with, and GROW, which changes the size of the
chosen shape. For example, ASK "SQUARE will
draw a square, and then GROW [* 10] will erase the
square and then redraw it with each of its sides
increased by a factor of 10.

To keep the programs simple we will have to
accept a few restrictions on what we can do with
these commands. Firstly, the shape procedures
given as inputs to ASK may not contain REPEAT or
call subprocedures. Secondly, the system will
break down if you get negative results. Neither of
these problems is very difficult to deal with if you
should wish to improve on what we give here.

ASK works by assigning the name of the shape to
the global variable "CURRENT and then running the
procedure. It does this by creating a list of one item
- the procedure name - and then using RUN to
execute it.

TO ASK OBJECT
H IDETU RTLE
MAKE "CURRENT :OBJECT
RUN (LIST:OBJECT)

END

THE HOME COMPUTER ADVANCED COURSE 953

