
Computing

the example we have given, is F$ a misprint for F or
FS or F4? Or something entirely different? If you
were to show the complete listing to another
competent programmer, he should be able to
identify the faults and make the corrections. He
would use two criteria in making his decisions: the
context in which the program line appeared, and
his own experience.

Strangely enough, this technique has been more
widely applied to correcting English text than to
checking program code. A spelling checker
package, for example, will work through a text and
highlight any words that don't match the entries in
its dictionary of perhaps 50,000 words, held on
disk. Most of these packages have the facility to
learn new words (such as the spelling of company
or proper names) and add these to their
dictionaries. The more sophisticated will even
suggest the correct spelling if a close match is
detected. Experimental word processors have also
been developed that can apply the same processes
to grammar and writing style — pointing out such
things as incorrect punctuation, repetition of
words within a paragraph, mixed metaphors, and
inapplicable adjectives. Again, these work by
examining the context of any phrase, and by
reference to a library of previously used examples.

More effort, however, has been put into the
development of systems that will create programs,
rather than correct existing ones. In 1981, a
software product was announced that set off one
of the fiercest battles ever waged within the
microcomputer industry. Cleverly named The
Last One, it purported to be a program that could
write any other program you might want, and
hence was the last program you would ever need to
buy. This proved to be an unjustified claim, but
The Last One was a very useful aid in the
development of certain types of program -
mainly business applications. There are now
several such products on the market for business
microcomputers, and a few for home computers,
and these are collectively called `program
generators'.

Let's now look at the basic concept behind a
program that can write programs. Consider this
trivial example:

10 PRINT "WHAT DO YOU WANT THE PROGRAM TO
DISPLAY ON THE SCREEN?"

20 INPUT AS
30 PRINT "THE PROGRAM IS:"
40 PRINT "10 PRINT ";CHR$(34);A$;CHR$(34)

If you answer HELLO to the question, the program
(which should run on most home computers)
should print out the line:

THE PROGRAM IS
10 PRINT "HELLO"

If you apply the same technique to the input,
calculation and output phases of the application
you have in mind, then you could write yourself a
very simple program generator. If all the questions
that it asks are plainly worded, it should be

possible for someone with no previous experience
to develop a simple program using your generator.

Commercially produced program generators
use the same techniques. Most business
applications consist of a combination of five
distinct processes: input of data, output to screen
or printer, storage in a data file, retrieval, and
calculation. The generator will have standard and
very flexible subroutines for each of these. By
asking you to specify the exact structure of the data
you will be using, the calculations that go with that
data, and the layouts you require on the screen and
printer, the generator will change the values of
certain variables in the subroutines, and string
them together to create the program.

Although program generators are becoming
more sophisticated, they are unlikely to replace
human programmers in the immediate future
because they suffer from the following limitations.
First, the technique described is all very well for
transaction-based business applications such as
accounting or stock control, but generally these
program generators can't be applied to writing
word processor or games programs. Secondly,
because the program generator has to make use of
these standard flexible subroutines, the resulting
listing won't be nearly as efficient (either in terms
of speed or memory used) as it would have been if
it had been purpose-written by a programmer.
Thirdly, programs produced by generators
generally aren't as user-friendly as the systems
currently being produced by human
programmers. For example, they seldom make
good use of the graphics facilities offered by the
latest machines.
Finally, the program generators that are now
available can only really replace the final stage in
programming — the writing of the code. The user
still has to put the work into thinking out the exact
form of the data, input and output that is needed.
Generally, the earlier stages of programming are
the most difficult, and require specific skills
distinct from those of programming. Most large
companies employ specialists called `systems
analysts' to specify the programs they need, and
these specifications are then turned into code by
programmers. Program generators have yet to
acquire all the skills required to create a computer
program.

Tools Of The

Trade
'Programmer's Toolkits' can
be purchased for many home
computers, in the form of
ROM chips or plug-in
cartridges. They extend the
range of BASIC commands,
particularly for program
writing and de-bugging

THE HOME COMPUTER COURSE 385


