
been generated is passed back.
Data moves around programs inside variables

and the freedom of movement of a variable is
called its 'scope'. Many programming languages
can restrict the scope of a variable to particular
subroutines. In PASCAL, the variables used in a
particular subroutine (procedure), must be
'declared' for that procedure. Variables declared
for the main program are global and may be used
anywhere in the program (including within any of
its modules). Variables declared within a
particular procedure, however, are local to that
procedure and can only be used there.

Local variables can have the same names as
global ones and using one does not affect the value
of the other. Using a language that supports local
variables allows us to write subroutines without
having to worry about how the variables used in
the routine might affect variables in other
routines. Unfortunately, very few versions of the
BASIC language support local variables, which
means that if we wish to write independent

subroutines we must somehow simulate the effect
of having local variables.

The simplest way to do this is to adopt naming
conventions that distinguish variables that do
different jobs. Some conventions already exist and
are widely used by programmers. Using I, J and K
as loop counters and index values is very common,
a practice that has been adopted from
mathematics.

Having described a program with a flowchart, it
is a simple matter to number the subroutines
involved, or to give them some other kind of code.
Any global variables that need to be made local to
a particular subroutine can then be suffixed by this
code to make them unique. Thus, routine number
5 may use the local variables SU M5 and TOTAL5 to
distinguish them from SU M12 and TOTAL12 in
routine number 12. Be careful though that the
BASIC you are using doesn't look only at the first
two characters! Variables that are used to pass
values between subroutines and those used only in
the main program need not be coded.

OneWay Out
An unstructured routine, with a
single entry point but two exit
points. The flow of control is not
precisely determined, which•FLAG = 0
confuses the structure of related
modules

Here we have taken the same

EXITroutine, but provided for
processes E and F to set a flag.

Y•,.••This enables the routine to flow
to a single exit point. A single

NOexit could also be achieved
through the use of GOTOs in the
code. Remember though that

;•
e..GOTOs must be used with

:.	extreme care
AAe

g

0
e
0

:.
0
'..

'0

......

EXIT
E

...

..

.

..,.,
....

"

FLAG =1
;

1
."WWI on..............

i

e.
. ,...e.w........ Wee•Id

Eli
F

•

•
.FLAG =1 F

...............'O. •Y"I''.n•mv•oecovuto"..•••e...•

..:

%

13
0,
D.•
...
.„.
....
...

13

THE HOME COMPUTER ADVANCED COURSE 455

