
60
126

255
255
255

255
126
60

Thsdtoo
In the ALU picture for the BBC
Micro a button shape is
required to represent the three
choices, AND, OR and NOT,
available to the player. In the
absence of a CIRCLE
command or special PET-type
graphics characters we must
redefine an existing BBC
character. Using an 8 by 8
grid we can design a shape
and represent it using 8
decimal numbers.
CIIR$(240) can then be
redefined using the VDU 23
command:

VDU 23,240.60, 126,255,
255,255,255, 126,60

PROGRAMMING PROJECTS ADVENTURE GAME

SCREEN ROUTINES

Although most adventure games are text-
based, some take advantage of the large
memory and colourful graphics now
available on home micros to create relevant
screen displays. We present the first of three
articles in which we design sample screens
for our adventure game for the BBC Micro,
Commodore 64 and the Spectrum.

In this instalment, we will consider how the
graphics facilities of the BBC Micro can be used to
create screen displays for adventure games. The
game that we have been developing, which we
have called Digitaya, is a text-based adventure
game. That is to say, it uses words to describe the
imaginary surroundings in which the player is
placed. A text-based adventure, for example,
would simply display the message 'You are in the
throne room' to conjure up a setting, while a
graphic adventure would attempt to draw a room
with a throne.

The screens that we will design here display two
locations of particular interest in Digitaya: namely,
the entrance to -the joystick port and the
Arithmetic and Logic Unit. The number of such
screens is often limited by the amount of memory
available; the commands required to produce each
display take up memory space that would
otherwise be available to increase the complexity
of the plot.

ALU SCREEN DESIGN
Before we can start to design a screen for the BBC
Micro, we must answer several questions:
1) How much memory do I have available?
2) How many colours do I need?
3) What standard of resolution is required?
All these questions can, in fact, be combined into
one: 'What mode shall I use?'. Higher resolution
and a wider range of colours mean that valuable
RAM is taken up by the screen area. In our design,
we shall use mode 1, which gives us four colours, a
40 by 25 screen and medium resolution. We
should set the mode to be used by inserting the
following line at the beginning of the program:

1095 MODE 1

Having decided on the mode, we can then sketch
out what our screen is to look like, pencilling in
suitable co-ordinates as we go. The design chosen
here scrolls the upper-case letters A, Land U onto
the screen. In the game, the player must press one
of three buttons - marked AND, OR and NOT -
and these must also be moved onto the display.

Mode WE.Ø
In a BBC Micro program
various 'trade-off' decisions
must be made: hi-res modes use
a lot of memory and support
few colours; text modes use
less memory, allow better
colour ranges but support only
medium or lo-res graphics. In

Additional features include a thin border around
the edge of the screen and a tapering foreground. the expense of a 20 Kbyte

this program, Model gives the
necessary resolutions, but at

Our rough design looks like this: 	 screen memory

1023 . 	 40 COLUMNS

10 	1 19

AND
	

IN&T..__ . __

REFOREGRUN- - --

0 0
	 72q 1850 	

1279

Each letter is formed by MOVEing to a start point
and then using PLOT 1 to draw the shape of the
letter as a series of lines relative to the start point.
By designing the letters in this way they can be
moved around the screen simply by changing the
initial MOVE command. We can also rub out letters
by redrawing the letter shape in the same position,
but specifying Exclusive-OR plotting by using
GCOL3.

The buttons are formed by redefining a
character. In this case, CHRS(240) is redefined by
the procedure button to become the shape shown
on the right. Notice that CHRS(240) is assigned to
the variable buttonS for use in the main part of the
routine. The buttons and labels can be simply
positioned by PRINTing them at co-ordinates
specified by the TAB command.

The foreground is created using the triangular
fill primitives provided by the PLOT 85 command.
This command joins the point specified to the last
two points previously plotted and then fills the
resulting triangle with colour. The quadrilateral
shape of the foreground can be drawn and filled by
two such fill primitives.

The code for the screen display forms a
subroutine of the special routine designed to deal
with the ALU location in the game. The command
AS-GETS, at line 7560, waits for a keypress before
restoring the original foreground colour, clearing
the screen and RETURNing to the main ALU
routine to continue with the game. To can this
graphic subroutine, the following line should also

904 THE HOME COMPI.TFER ADVANCED COURSE

