
PAPT 14/MACIUNECODE

The Z80 instruction at BEGIN and BEGIN1 (LD
IX.LABL1-1) illustrates the usefulness of an
assembler program. Here, it decodes the expression
(LABL1 -1) to mean 'the address of the byte
immediately before the byte whose address is LABL1',
and assembles that address into the code. Most
assemblers support some measure of expression
evaluation, usually allowing one or two operands to be
modified by a single arithmetic operator — normally
1 + 1 or '-'.

2) This program reverses the order of characters in
each word of the string at LABL1, while maintaining
the order of the words themselves:

6502

ORIGIN ORG $7000
LAST1 EMI $0D
SPACE EQU $20
LABL1 	DB 	'THIS IS'
TERMNS DB LASTS

BEGIN LDX *SEE
LOOPO JSR RVSWRD

CMP #LAST1
ENDLPO BNE LOONY

RTS

;****REVERSE A WORD S/R****
LASTCH DB $00
LASTX DB $00
RVSWRD TXA

TAY
IN?

RVSLPO INX
LDA LABLI,X
PHA
CMP *SPACE
BEG CLRSTK
CMP #LAST1

ENDRVO BNE RVSLPO
CLRSTK PLA

STA LASTCH
5Th LASTX

RVSLPI PLA
STA LABLI,Y
INY
CPY LASTX

ENDLPI BNE RVSLP1
LDA LASTCH
RTS

There are several points of interest here: the use of JSR
and CALL instructions, for example. The RVSWRD
subroutine is similar in structure to the program given
in Exercise 1, but it reverses only the characters of a
word, not the whole string. In both the 6502 and Z80
versions, the index register (X and IX respectively) is
used to pass the start address of the word to the
subroutine, and the accumulator is used to pass back
to the calling program the value of the character that
terminated the work (either a space or the string
terminator character). Passing values this way is a
very common Assembly language technique, and
must be used with care — especially if you are in the
habit of pushing all CPU registers at the start of every

subroutine (as demonstrated on page 258).
Another significant feature is the use of the Y

register in the 6502 version, first to hold the start
address of the word while X is used as an index on the
stacking loop, then as an index on the 'un-stacking'
loop while X holds the end address of the word.
'Address' is used imprecisely here as X and Y are
single-byte registers, so neither can hold a full
address. Instead, in this case they hold an offset to the
address LABL1. In contrast, the Z80 IX and Ise index
registers can hold a full two-byte address.

In the Z80 version, IX and IV are not used atall — the
HL and DE register pairs are used instead. Like the
6502 X and Y registers, these hold the word start and

720
ORG $C000

LAST1 	EQU $0D
SPACE EQU $20
LABL1 	DB 	'THIS IS A MESSAGE'

	

TERMN8 DB 	LAST1

BEGIN 	LO 	DE,LABLI-1
LOOPO 	CALL RVSWRD

	

CP 	LASTI

	

ENDLPO JR 	NZ,LOOPO
RET

.***REVERSE A WORD S/R***

	

LASTCH DB 	SOO
RVSWRD PUSH DE

POP HL
INC HL

RVSLPO INC DE

	

LD 	A,(DE)
PUSH AF

	

CP 	SPACE

	

JR 	Z,CLRSTK

	

CP 	LAST1

	

ENDRVO JR 	NZ,RVSLPO
CLRSTK POP AF

	

LD 	(LASTCH),A

RVSLP1 POP AF

	

LD 	(HL),A

	

INC 	HL

	

LD 	A,L
CP

	

JR 	NZ,RVSLP1

	

LD 	A,H
CP

	

ENDRV1 JR 	NZ,RVSLPI

	

LD 	A l (LASTCH)
RET

end addresses, but instead of being indexes on abase
address, they are used as indirect addresses, (the
instruction LO A,(DE) means load the accumulator
from the byte whose address is held in DE'). All the Z80
register pairs can be used in this way. An odd
limitation of the instruction set is the lack of any two-
byte comparison instruction. Thus, comparing the
contents of DE and HL involves comparing E with L,
then D with H. Similarly, in the 6502 version, X and Y
are compared indirectly using a memory location,
since there is no instruction for comparing X with Y.

THE HOME COMPUTER ADVANCED COURSE 279

