
1— PROGRAMMING PROJECTS/NETWORKING
'....

JOINING FORCES
We introduced the principles of networking
on micros on page 321. Now we look at a
game application for the cheapest network
of all — the Sinclair ZX Net. This system is
the simplest possible but its potential for
both serious and amusing use should not
be overlooked.

Battleships is a classic pen and paper game. Each
player has two grids, which he keeps hidden from
his opponent. On one he marks his own ships, on
the other he marks his progress as he 'fires at' —
that is, tries to guess the position of — his
opponent's ships.

The program we have developed works on two
Sinclair Spectrums linked together with a
network. Both Spectrums must be equipped with
Interface 1. Each player sits at his own screen and
the two computers send each other messages that
report where the players are shooting and what the
results are.

The first hazard you meet is that of identifying
the players. In order to communicate, each
Spectrum has a different network station number.
The two Spectrums start off with identical
programs but somehow must end up with different
station numbers. This is handled automatically by
a routine at line 2000. When the program is RUN,
both machines will claim to be station 1 on the
public 'broadcast' channel.

Whichever machine is RUN first will become
station 1 and the other machine will then make
itself station 2. This system works well for
Battleships. The program then assumes that
whoever is station 1 is player 1 and therefore
allows him to shoot first. However, if the two
programs are started within a fraction of a second
of each other, the two messages "I'm station number

1" simply collide and the ZX Net system will stop
functioning until the players press the BREAK key.

Once you know who's who, it is easy for the
program to communicate with its opposite
number across the network. While one player is
picking a target square on his machine, the other is
waiting to receive his choice. The machines will
then swap over. One machine calculates the results
of the shot and sends back a message while the
other waits to receive the results and update its
screen display accordingly.

Provided you make sure that the two programs
always 'fit' together — one sending, the other
receiving — this is very easy to program. You don't
have to worry about timing, sending messages too
late, or missing them after they've been sent
because ZX Net stops until both stations are ready
and then transmits the data. So it doesn't matter if
one player takes a long time to select a target or if
the program takes a long time to update its screen.

Another point worth noting is that the amount
of data being transmitted should be kept to a
minimum. There's no need to send long chunks of
data. Provided both programs know what the
information means, you can communicate using
short codes. In Battleships, the program returns
the result of a shot as a two character string. The
first character is a code:

1 Miss
2 Hit a ship
3 Hit and sunk a ship
4 Hit and sunk a ship and won the game

The second character is the class of ship that was
hit (or a 0 for a miss). The program at the other end
can decode this information and display
appropriate messages. This method makes the
time taken to execute each turn so fast you
wouldn't think that another computer was
involved at all.

"•••=1,

TARGET SHIP
0123458769

B

F...0 	
H.XXX
I..0...0 ..
0 0.......

Fleet Action
Each player's fleet comprises
ships of different sizes (from
motor torpedo boat to carrier)
placed anywhere in the grid.
The screen displays the
position and status of one
player's ships and the enemy's
shots at them, and the position
and effect of his shots at the
enemy's ships: - X" shows a hit,
"0" for a miss

rtET BATTLESHIPS
LAYER U•

YOUR SHIPS
0123458769

A00....1 ..B.I....0...
D 0..
E.. .0 ...

Hio • [............
II. . .

1 1 1 :; !

346 THE HOME COMPUTER ADVANCED COURSE

