
recognises the letters (or characters, or numbers,
or voltage patterns) that make up a BASIC keyword,
the Operating System replaces that word by a
single-byte code number, called a token. This
saves memory space — RESTORE, for example,
would otherwise use up seven bytes — and means
that the Interpreter's job of translating the BASIC

program is much easier to perform.
Different machines use different token

conventions, but, in general, token codes are
numbers greater than 127. The ASCII codes for
the printable characters (shown in the table on
page 77) are all in the range 32 to 127. Therefore,
any byte in the BASIC Text Area containing a
number bigger than 127 must be a token byte put
there by the Operating System. When the
Interpreter encounters such a byte it simply
implements the appropriate built-in subroutine.

The question arises, however, of why, when you
LIST a program, you don't see unprintable
characters, but rather the BASIC keywords, etc.?
The answer is that during a LIST the Operating
System inspects each byte of the Text Area, and
whenever it finds a byte having a value greater
than 127 it treats it as a token. Somewhere in
memory is stored a complete list of the ASCII
representations of BASIC keywords and the value of
a token will point to that position. It's just the same
as if the Interpreter were using the token's value to
locate its implementation subroutine. And
consequently, the Operating System puts the
keyword rather than the token on the screen
during a LIST. You can demonstrate this to yourself
on a Commodore 64 very easily. (It's less
straightforward on the BBC and Spectrum.) In
lower-case mode, type:

100 rem*******h**********

Now LIST 100, and you should see:

100 rem******`IeftS** ' *****

On the Commodore machines, the ASCII value of
'H' in lower-case mode is 200 so when the O.S.
found a value of 200 in that particular byte during
the LIST, it interpreted it as the token for the
keyword LEFT$. If you now type:

100 remu***** I.H... . *....*,..,^

and LIST 100, you'll see:
100 remu*******H***********"*'

This demonstrates that it is important to
remember that some printable characters, usually
graphics characters, do have ASCII codes greater
than 127, and they will be recognised as such,

N MACHINE CODE /PART 4

TEXTUAL ANALYSIS

Before going on to investigate how machine
code programs work, it is salutary to look at
how BASIC programs are stored (in the BAsic

Text Area of memory) and implemented
(using the BASIC Interpreter program). This
will serve as a reference point later when we
come to discuss the way machine code
operates in memory.

When you type or LOAD a BASIC program into the
computer, you probably imagine that the
computer is an empty vessel doing nothing until
your instructions arrive. In fact, from the moment
that the power is turned on, the computer is
constantly running a sophisticated program of its
own — the Operating System. This is a program,
or set of programs, permanently burned into some
of the ROM chips inside the machine. Its purpose
is to make the machine work: it puts a display on
the screen, it communicates with the printer and
the disk drives, it scans the keyboard for
keypresses, and so on. To the O.S. everything that
comes into the machine is just data to be processed
by its own programs.

One of these programs is called the BASIC

Interpreter, and its purpose is to inspect the text of
BASIC programs, and to implement their
instructions. Everything in a BASIC program,
therefore, is just data for the Interpreter program
to process. When you type in a program, the
Operating System recognises it as such because
each new line begins with a valid line number.
With some exceptions every character of that
program line is stored in its own byte of the BASIC

Program Text Area of memory. When you type
RUN, the Operating System hands over control to
the BASIC Interpreter, which — like any program -
goes to work on processing its data (the contents of
the BASIC Text Area).

The Interpreter does not change your program
in any way, but simply interprets and implements
it. And because the Interpreter obeys commands
without question, it is quite possible to instruct it to
look at the contents of any area of memory. If your
program happens to allow you to inspect memory
and you use it to inspect the Text Area, that's no
paradox to the Interpreter. It just follows
instructions if it can, and reports SYNTAX ERROR or
OVERFLOW ERROR or something similar if it can't. It
has neither the reasoning nor the vocabulary to
issue error messages such as: TEMPORAL PARADOX
or PHILOSOPHICAL DISCONTINUITY.

The Operating System stores your BASIC

program character-by-character, with the
exception of the BASIC keywords. Whenever it

76 THE HOME COMPUTER ADVANCED COURSE

