
11411AP)- 1-10 A ORKSHOP/TWO-MOTOR CONTROL

1120 REM REPLAY DATA
1130 FOR I=1TOC
1140 ?DATREG=DR(I,1)
1150 TIME=0
1160 REPEAT UNTIL TIME>=DR(I,2)
1170 NEXT I
1180 END
1190:
1200 DEE PROCtest_keyboard
1210 IFAS=" "THEN ?DATREG=0
1220 IF INKEY(-36) = —1 THEN ?DATREG=5
1230 IF INKEY(-101) = —1 THEN ?DATREG=10
1240 IF INKEY(-68) = —1 THEN ?DATREG=6
1250 IF INKEY(-85) = —1 THEN ?DATREG=9
1260 PT=?DATREG
1270 IF PTODR(C-1,1) THEN PROCadd_data
1280 ENDPROC
1290
1300 DEE PROCadd_data
1310 DR(C-1,2)-TIME: REM STORE LAST TIME
1320 TIME = 0: REM START NEW TIME
1330 DR(C,1) = PT: REM STORE PORT STATUS
1340 C= C+1: REM INCREMENT COUNT
1350 ENDPROC

COMMODORE 64

10 REM CBM 64 MOVEMENT MEMORY
15 DIMDR(100,2): REM DIRECTION ARRAY
20 DDR=56579:DATREG=56577
25 POKE650,128 : REM SET KEY REPEAT MODE
30 POKEDDR,255: REM ALL OUTPUT
35 C1: REM INITIALISE COUNT
40 GETAS
50 GOSUB1000: REM TEST INPUT
70 IF AS <>"X" THEN FOR I = 1T0200:NE XT:GOT 040
80 POKE DATREG,0: REM OFF
85 DR(C-1,2)41—T: REM ENTER LAST TIME
90 STOP: REM TYPE 'CONT' TO CONTINUE
95 REM REPLAY DATA

100 FOR I=1TOC
110 POKEDATREG,DR(I,1)
120 T=TI
130 IF (TI—T)<DR(1,2)THEN130
140 NEXT
150 END
999

1000 REM TEST INPUT S/R
1005 IFAS=" 'THEN POKEDATREG,0
1010 IFAS="T" THEN POKEDATREG,5
1020 IFAS="B" THEN POKEDATREG,10
1030 IFAS= "F" THEN POKEDATREG,6
1040 IFAS="H" THEN POKEDATREG,9
1045 PT=PEEK(DATREG)
1050 IFPTODR(C-1,1)THENGOSUB1500
1498 RETURN
1499
1500 REM ADD DATA TO ARRAY
1510 DR(C-1,2)T1—T: REM ADD LAST TIME
1520 T = TI: REM TAKE NEW TIME
1530 DR(C,1)=PT: REM ENTER CURRENT PORT CONTENTS
1540 C=C+1: REM INCREMENT COUNT
1999 RETURN

This program allows the user to move the vehicle
about under keyboard control. As each move is
recorded as a direction and a time interval, any
errors introduced in the timing of each movement
will produce errors in the replay. We are entering
into the difficult area of real-time computing,
where program structure and execution time can
become important factors.

In the next instalment of Workshop we shall
take control one stage further by bringing our twin
motor vehicle under the control of a joystick.

a

Exercises
Now that we can control a vehicle's movement in all
directions, many possibilities arise for short
programming exercises. You can probably think of
many but here are a few ideas:

1)Try to calibrate your vehicle. How long does the
relevant number have to be in the data register to make
the vehicle move one metre forwards or backwards, or
turn through 90 degrees?

2) Design an obstacle course for your vehicle and,
using the programs given as a basis, write a program
that allows you to 'teach' the vehicle to negotiate the
course under keyboard control. Once you have guided
the vehicle through its course, the program should
take over, guiding the vehicle back to its starting point
and retracing the course.

3) Connect up four switches to the buffer box that
allow you to control the vehicle externally from the
user port.

Memory Movements
It is reasonably simple to write a
buggy-controlling program that
accepts directions from the
keyboard and drives the car
accordingly. It is not much more
difficult to extend the program
so that it stores the operator's
commands, and then replays
them to the buggy, thus
reproducing — in theory — the
previous pattern of movement.
Comparing the original with the
supposed duplicate gives a
measure of the software
problems caused by dealing
with the real world: the
computer works in exact
numbers and ti mes on a
simplistic model of a perfect
universe, not allowing for
inertia, frictional losses,
irregular surfaces and low-
tolerance engineering. In the
li ght of this experience, the
performance of LOGO-driven
floor turtles is impressive

614 THE HOME COMPUTER ADVANCED COURSE


