
only one execution of a piece of code would be
very inaccurate because the system clock
measures only in 60ths of a second, and there is a
timing overhead imposed by the code of the
testbed program as well.

Here are some general rules for writing
efficient BASIC, roughly in order of importance:

1.Avoid all arithmetic in loops.

Exponentiation (x3 , meaning `x raised to the
power of 3', for example), and mathematical
functions (cos(y), meaning 'the cosine of the
angle y', for example) are particularly slow.
Multiplication and division are slower processes
than addition and subtraction, but even the
quickest of these operations (addition) is
relatively slow.

In the testbed program insert these lines:

900 Z=1.1
2300 X=Z13

and run it. On our test machine 500 repetitions
took 27.95 seconds. Now replace line 2300 with:

2300 X=Z*Z*Z

and run it. This took 3.55 seconds — a dramatic
difference!

Further investigation will reveal the level of
exponentiation at which it becomes worthwhile
replacing repeated multiplication by the
exponentiation function. On our computer this
was at the 18th power (when X=Zt18).
Remember, however, that to calculate Z 2•3 , for
example, repeated multiplication would be
useless, whereas the exponentiation function (1)
works for all real numbers, including negative
ones.

Use the testbed program to see how long the
other arithmetic processes take, and compare
alternatives. Is it quicker to divide a number by 2,
or multiply it by 0,5, for example?

2. Use variables rather than numerical
constants.

Every time a numerical constant (7,280 for
example) occurs in a BASIC instruction, time is
spent translating the number into usable form.
Try this line:

2300 X=X+7280

On our machine that took 4.63 seconds to
execute 500 repetitions, whereas:

r

o Software

Top
By paying careful attention to variables and program structure, you
can speed up the operation of almost any Basic program r

BASIC is, despite what its critics say, a versatile
language and a powerful educational aid. You can
write any program in BASIC, provided your
machine has enough memory and the execution
time is not important. However, because BASIC is
usually interpreted rather than compiled (see
page 184), it can be painfully slow in executing
programs — especially those that require the same
instruction to be translated and executed
repeatedly.

Sorting, for example, is a highly repetitive
process: the procedure is carried out within a
loop, and there are smaller loops nested inside the
main loop (see page 286). If 100 items are to be
sorted, the program may make between 2,500
and 5,000 iterations of the loop. A BASIC sort will
always be slow, but the way the code is written can
make a significant difference to the speed of
execution, If an instruction is to be repeated 5,000
times, and if coding it properly can save one
hundredth of a second of execution time for each
repetition, then there will be a total saving of 50
seconds — a considerable improvement for the
user.

To observe the difference that good and bad
coding can make, you will need a timing
mechanism and a `testbed' program. If you own a
Commodore computer, you can use the system
clock, with the associated variables TI$ and TI, as
part of the testbed program. If your computer
doesn't have an accessible clock, you'll have to use
a stopwatch to time the code in execution. It is
also a good idea to make your program `beep' at
you when it starts and finishes, so that you'll know
when it's operating.

The testbed program looks like this:

1000 L=500
2000 PRINT "***G0**:REM "BEEP"

instructions here
2100 TIS="000000"
2200 FOR K=1 TO L

2900 NEXT K:T9=TI
2950 REM "BEEP" instructions here
3000 PRINT" *****STOP******
3100 PRINT "That took "; (T9/60); " seconcs"

Lines 2100 and 3100 are for Commodore users.
For other machines, delete or replace them with
appropriate code. The space between lines 2200
and 2900 is where we will put the code to be
timed. Notice that the timings will refer to L
repetitions where L is the limit of the loop. Testing

328 THE HOME COMPUTER COURSE

i'

ni

