THE SPECTRUM OF

ZX BASIC

Basic has become the standard language of
microcomputers, but almost every machine
has its owmr variation — or dialect. In this
series of articles we will be looking at some
of these variations and their functions, as
well as explaining how they can be
‘translated’ from one dialect to another.
This first article looks at the most widely
used dialect — Sinclair Basic.

We begin with variable names — always a source
of confusion between asic dialects. In Sinclair
BASIC, String variable names must have only one
letter, and there is no distinction between upper
and lower case letters. This means that the
variables a$ and AS refer to the same memory
location. String array names follow the same rules
as simple variables, and pre-empt them, so that
once you've DIMensioned the string array HS, all
further mentions of H$ in the program will be
taken as referring to the array HS. This follows
from the fact that Sinclair sasic regards all string
variables as array-type variables, some of them
formally DIMensioned, and others not.

Numeric variable names are less constrained
than those of string variables: they must begin with
a letter, and they must consist of letters or digits,
but they may be any length. They may include
spaces, and they may be a mixture of upper and
lower case letters, but although these factors are
helpful to the programmer, they are of no
significance to the machine, which will ignore
them. Some valid numeric variable names are:

qwert, ub40, advanced computer course
and the following are exactly equivalent:
QWERT, UB 40, Advanced Computer Course

Numeric array names must be single letters, but
this does not preclude numeric variables of the
same name: the array variable v(8) is quite distinct
from the simple numerical variable v. Single-letter
non-array numerical variables such as v must be
used as the counters of FOR ... NEXT loaps, so FOR
V=1 t0 9...NEXT V is legal, but FOR loop=1T0 9 is
illegal.

The main differences between the Sinclair
dialect and other Basics lie in the treatment of
string quantities. Let us start with the effect of the
DIM statement. In Sinclair Basic, when the
statement DIM a$(12) is executed, 12 bytes of
memory are set aside exclusively for the use of the
variable a$, and these bytes are initialised with
spaces. Each of these bytes can be referred to as a
subscripted variable, or the whole 12 bytes can be

14 THE HOME COMPUTER ADVANCED COURSE

referred to collectively as a$. The length of this
variable will always be 12, and assignments to it
will be padded with spaces or truncated on the
right as necessary to preserve this length. Suppose
we write:

DIM a$(12): LET aS="123456789"

then a$ will actually contain the characters
123456789’ followed by three spaces, making 12
characters in all. If we write instead:

DIM a$(12):LET aS="ABCDEFGHIJKLMN'

then a$ will actually contain only the 12 characters
‘ABCDEFGHIJKL’ — the string quantity ABCD
EFGHIJKLMN? has been truncated on the right
to fit into the DIMensioned length of a$. If we now
write:

LET aS(2 TO 5)="1234"

thena$ will contain ‘A1234FGHIJKL. This shows
the power of Sinclair string handling — all strings
are treated as single-dimension string arrays, the
arrays can be subscripted or not, and individual
elements of an array can be accessed —singly oras
part of a sub-string — by subscripts. It also shows
another major divergence from other versions of
aasic. Elsewhere DIM aS(12) creates 12 separate
string variables called a$(1), a$(2), etc., each of
which has the length of the expression assigned to
it. If nothing has been assigned to a particular
string variable, then its length is 0, and it contains
only the null string, *".

In other Basics this way of handling strings
requires the various string functions, LEFTS,
RIGHTS, MIDS, and sometimes INSTR, to enable
sub-string manipulation and string-slicing in the
way demonstrated. But this is not so in Sinclair
pasic. The Sinclair equivalents of these string
functions are:

LEFTS(ASN) = AS(TON)
(meaning the N leftmost characters of AS);
RIGHTS(AS,N) = AS(LEN AS-N+1T0O |
(meaning the N rightmost characters of AS); and
MIDS(AS,P.N) = AS(P TO P+N-1)
(meaning the N characters from position P
onwards in AS).
LET S=INSTR(AS, “teststring”)

(meaning find the starting position in A$ of the
substring “teststring”) can be replaced by:

LET Y$=AS:LET Z$="teststring":G0SUB 9900:LET
S=POSN
9900 LET ZL=LEN ZS:LET SL=LEN YS-ZL+1:LET



