
" Basic Programming

390 REM SELECT SUBROUTINE
400 REM USING ON...GOSUB
410 ON 0 GOSUB 530,600,670,740,810,830
470 RETURN

Although your version of BASIC probably contains
many statements and functions we have not
covered, most will be extensions to the `basic'
BASIC designed to take advantage of particular
features of your machine. Many of these will relate
to graphics features built into the hardware -
instructions such as PAINT, PAPER, INK, BEEP and
CIRCLE. These tend to be `machine specific' and so
we have not included them in our course, though
we will be giving you more details in other articles.

Before ending the basic part of our BASIC
course, however, there are some loose ends to tie
up — a discussion of the ASCII character set,
together with a couple of functions for helping
manipulate characters, and a way of defining new
functions (or functions not included in your
version of BASIC).

Several methods of representing letters of the
alphabet and other characters such as numbers
and punctuation marks in digital form have been
devised over the years. One of the first was Morse
code, which uses combinations of dots and dashes
to represent characters. From the computer's
point of view, Morse code suffers from the
disadvantage of using different numbers of bits for
different letters — between one and six dots and
dashes for each character. Other attempts at
making a more regular and systematic character
code (e.g. the Baudot code, which uses five bits to
represent up to 32 characters) have fallen by the
wayside and the almost universal system now in
use is the ASCII code (American Standard Code
for Information Interchange).

The ASCII code uses one byte to represent the
94 printable characters, the 'space' and a number
of control 'characters'. Eight bits could give 256
unique combinations (2 s), but this is far more than
is needed to represent the characters of a standard
typewriter or computer keyboard, so only seven
are used, allowing for 128 unique combinations.
(The eighth bit is usually wasted but is sometimes
used to specify an alternative set of foreign
language or graphics characters.) The binary and
decimal ASCII codes for the standard range of
characters are given in the table.

As you can see from the table, the ASCII code
for the letter A is 65 and for B is 66. The codes for
the lower case letters a and b are 97 and 98. Every
lower case letter has an ASCII code value larger by
32 than its upper case equivalent. This constant
`offset' makes it easy to convert lower case letters
in character strings into upper case letters, and
vice-versa. To do this we will need two further
functions not used so far in the Basic
Programming course — ASC and CHRS.

The ASC function takes a printable character
and returns its ASCII code equivalent, so PRINT
ASC("A') would print the number 65 on the screen;
PRINT ASC('b°) would print 98.

214 THE HOME COMPUTER COURSE

The CH R$ function does the opposite; it takes a
number, assumes it is an ASCII code and returns
the character it represents. Thus PRINT CHRS(65)
would print A, while PRINT CHRS(98) would print
b. The CHRS and ASC functions are widely used,
along with LEFTS, RIGHT$ and MID$ in programs
making heavy use of character strings. Here's a
short program that accepts a character from the
keyboard, checks to see if it is upper case and
converts it to upper case if it is not:

10 REM LOUVER TO UPPER CASE CONVERTER
20 PRINT "INPUT A CHARACTER"
30 INPUT CS
40 LET C = ASC(CS)
50 IF C > 90 THEN LET C = C -32
60 PRINT CHR$(C)

We shall see more of this type of string
manipulation in forthcoming parts of the course.

Finally, in this round-up, a look at functions
you may not have in your version of BASIC. Almost
all versions of the language allow the programmer
to create new functions, and these are almost as
easy to use as built-in functions. The DEF
statement signals to BASIC that a new function is
being defined. Here's how to define a function to
calculate the volume of a sphere (the formula is
V = &, where r is the radius of the sphere and n
(pi) is the constant approximately equal to
3.14159):

10 REM FUNCTION TO CALCULATE VOLUME OF A
SPHERE

20 DEF FNV(X) = 4 * 3.14159 ' X * X * X/3
30 PRINT "INPUT RADIUS OF SPHERE"
40 INPUT R
50 PRINT "THE VOLUME OF A SPHERE OF RADIUS

' . :R; . IS"
60 PRINT FNV(R)
70 END

This way of defining a function is fairly
straightforward, but let's look at the line in detail:

DEFines function identifier1 l
20 DEF FNV(X) 

=4* 
3.14159 *X * X

FuNction dummy variable

When the function is defined, the letters FN are
followed by an identifying letter — V in the case of
the function above — and this must then be
followed by a `dummy variable'. This dummy
variable must also be used in the function
definition on the right of the equals sign. When the
function is used in a program, any numeric
variable can be used in place of the dummy
variable in the definition.

At a further point in the program above it
would be equally possible to use the `volume of a
sphere' function like this:

999 LET A= 66
1000 LET B = FM/(A)
1010 PRINT B

n


