
subroutines called by the control program. Our
listings show how two of these routines might look.
The first (beginning at line 4000) simply prompts
the user for a number between 1 and 20 (the word
length). It uses a general-purpose subroutine that
is assumed to exist at line 51000, which will take a
string specified in PROMPTS, print it and then
accept a number input by the user. If this number
is not an integer that falls between the limits set by
M IN °/0 and MAV/0, an error message will be given
and the user will be asked to input a new number.
This subroutine may easily be used in other
programs, and a library of such general-purpose
modules may be built up for use in later projects.

4000 REM Discover word length from
player
4010 REM
4020 PROMPTS

=
"How many

there in 
y
our word ?"

4030 MINX=1
4040 MAX%=20
4050 GOSUB 51000:REM input an integer
between MIN/. & MAX%

• 4060 WORDLEM
=
PESP%:RE

M
 RESP% is used

the subroutine at 51000 to pass back
the response
4070 RETURN

letters are

by

 Moves Mocks DOWN

. K4,77 

From T

ECIFIC APPUCATIONS
SUBROUTINES

NTROL PROGRAM

Lines 3000-3080ENERAL SUBROUTINES

IMTIAUSATION SUBROUTI
130

Lines 1000-1050

Recursive algorithm

Lines 1120-1150

Moves blocks UP

Lines 1160-1180

Moves blocks SIDEWAYS

Lines 1190-1220

Draws block shapes

Lines 3100-3160

Puts blocks in initial tower position

0cN't-'-4
Ammiiiii

8000 REM select data set and load it
8010 REM
8020 IF WOROLENX:7 THEN FILE_L%=8

ELSE FILE_LWORDLEN%

803
.0 FILENO_LS=STR$(FILE_L%)

8040 FILENAMES="TABLE"+FILENO_L$
8050 GOSUB 9000 :REM OPEN. READ & CLOSE
the file with the likelihood data for
the appropriate word length.
8060 RETURN

The other routine (beginning at line 8000) uses
local variables (FILE L% and FILEN° LS). We have
assumed that the data needed to guess a letter is in
eight sets of tables that give the likelihood of
finding any particular letter next to any other. As
we want only one set of data in RAM at any time,
we must build up a string in FILENAMES to hold the

name of the data file, and then call the subroutine
at line 9000 to read the file.

In many cases, we will find that our program will
move directly from one routine to another.
However, we will usually want to create an extra
routine that calls each of the other two in turn. This
may seem like an unnecessary complication, but it
allows us to keep a tight control over the program's
tow' and it has the added bonus of keeping
program modules separate so that they may be
easily added to other programs.

This use of subroutines that are transportable
from one program to another does involve extra
work, and care must be taken when designing the
routines so that they are suitable for use in a wide
variety of circumstances. This may often be
achieved simply by replacing constants with
variables. It is important that all subroutines
should be well documented. The documentation
should specify the exact purposes of the routine,
giving details of the variables used, the values
expected as input and output, and any side-effects
(moving the cursor position, changing the
memory map, closing files, and so on).

A standard layout is also very helpful; you
should make sure that all line numbers have a fixed
interval, the titles and comments are restricted to a
set number of lines at the beginning of the routine,
and that RETURN is always on the last line. Be sure
to note the first and last line number of each
routine. When a library routine is required, make
sure that the program has an appropriate gap in its
line numbers and then MERGE the subroutine into
the program. If your micro has no MERGE
command, it may be possible to use a text editor to
combine programs that have been SAVEd in ASCII
format rather than the usual 'tokenised' form. If
this is not possible, your library subroutines will
need to be typed in each time they are used.
However, the fact that they will not need to be
redesigned should make the extra work
worthwhile.

Top-down Programming
This diagram illustrates the
principle of top-down
programming. We have used the
Towers of Hanoi program that
appears on page 475. The line
numbers in the diagram refer to
the BBC listing.

The first layer of the structure
represents the initialisation
program, which must be
completed before the rest of the
program can be executed. The
CONTROL PROGRAM in our
diagram represents the recursive
algorithm, which performs the
calculations and calls the other
subroutines as necessary. The
SPECIFIC APPLICATIONS
SUBROUTINES (lines 1120 to
1220), are used to move the
block shapes from pile to pile in
the display. The final two
sections of the diagram,
GENERAL SUBROUTINES,
represent the last two sections of
the program that are used to
format the initial display and
create the design for the blocks.
Compare this structure with the

g listing, and you will see that the
g program is constructed in

exactly this sequence

THE HOME COMPUTER ADVANCED COURSE 477


