
Basic Programming

A(5) = 3, then if X has the value 1, A(X) will be the
contents of A(1), which is 4. A(X + 1) will be the
contents of A;2), which is 9, and so on.

Look at the program and see if you can see
exactly what is going on. Line 20 sets variable N to
the number of numbers we want to sort. Let's
assume we want to sort five numbers: when the
program is run we will type in 5 and then hit
RETURN.

Line 30 is the DIMension statement. If N is 5, it
sets the size of the array to 5. This line is
equivalent to DIM A(5).

Lines 40 to 60 are a FOR-NEXT loop that
allows us to type in the five numbers. Most
versions of BASIC prompt the user with a question
mark on the screen. RETURN will have to be
pressed after each number has been entered. The
numbers may be more than one digit, and may
include decimal fractions.

Line 90 sets the variable S to 0. This variable is
being used as a `flag'. Later in the program, A is
tested to see if it is 1 or not. It is only ever set to 1 if
two numbers have been swapped, as we shall see
in line 240, We shall investigate the use of `flags' in
more detail later in the course.

Line 100 sets up the limits for a loop; in this
case from 1 to 4 (because N is 5 so N —1 is 4). The
first time through the loop, L is 1 so A(L) in line 110
will be A(1) or the first element in the array and A(L
+ 1) will be A(2), the second element in the array.
The next time round the loop, L will be
incremented to 2, so A(L) will be equivalent to A(2)
and A(L — 1) will be equivalent to A(3). Line 110
tests to see if A(L) is greater than the number
immediately to its right in the array. The sign for
`greater than' is >.

If the first number is bigger than the next one,
the program branches to a subroutine that swaps
the numbers. If the first number is not bigger than
the next one, there is no branch to the subroutine
and BASIC simply continues to the next line, which
is the NEXT L statement. After the loop has been
repeated four times, it stops the program and goes
to line 130 which tests the `swap' flag, S. to see if it
has been set or not. If it has been set (in the `swap'
subroutine), the program branches back to line 90
to repeat the comparison process. If S is not 1 it
means no swap took place, so all the numbers are

Basic Flavours
If this program is to be run on the ZX81 or

Spectrum, line 130 rrust be amended to
read: 130 IF S-1 THEN 0010 90

This statement is not available on the
ZX31 anc Spectrum, so use STOP instead

In assignment statements, such as
90 LET S- 0, the word LET is optional on
most machines but not on the ZX81 and
Spectrum. The Lynx adds it into program
list ngs automatically

in order. The rest of the program simply prints
them out.

The swap subroutine needs a temporary
variable to store one of the numbers to be
swapped. After the two numbers have been
swapped in lines 210, 220 and 230, the `swap' flag
S is set to 1 and then the program RETURNS to the
main program.

10 PRINT "HOW MANY NUMBERS DO YOU WANT
TO SORT?"
20 INPUT N
30 DIM A(N)
40FORX=1TON
45 PRINT "NEXT NUMBER"
50 INPUTA(X)
60 NEXT X
70 REM
80 REM SORT ROUTINE
90 LET S = 0
100 FOR L=ITON-1
110 IFA(L) > A(L+ 1) THEN GOSUB 200
120 NEXT L
130 IFS=1 THEN 90
140FORX=1TON
150 PRINT "A(";X;") = ";A(X)

160 NEXT X
170 END
180 REM
190 REM
200 REM SWAP SUBROUTINE
210 LET T = A(L)
220 LET A(L) = A(L + 1)

230 LETA(L+1).=T
240 LET S =1
250 RETLRN

Exercises
• Extend the program to find the average value
of the numbers input. The average is equal to the
sum of items divided by the total number of items.
The simplest way to do this is to insert a GOSUB
just before the END statement in line 170. The
subroutine should read each of the elements in the
array and add the values to a `sum' variable, After
all the elements have been added, the sum should
be divided by the number of elements. The sum is
most easily derived by using the number of
elements as the upper limit of a FOR-NEXT loop.
• Change one line in the program so that the
numbers will be sorted in descending order.
• This exercise is directed mainly at owners of the
T199/04A which does not like having variables
used as subscripts in subscripted variables. TI
BASIC does, however, accept statements such as
DIM A(12). Rewrite the program so that the INPUT
statement expects an exact number of numbers to
be input, 12, say. This will avoid the problem of
using a variable name as a subscript, Lines 100
and 110 will also have to be changed. The swap
subroutine will not work in TI BASIC for the same
reason. This will have to be changed too.
• A tough one. Our way of sorting numbers is by
no means the only way to do it. See if you can
think up an alternative method.

118 THE HOME COMPUTER COURSE


