
MACHINE CODE' OPERATING SYSTEMS

regards the colon and the PRINT statement as part
of the FX command.

Both problems are caused by the fact that the
*FX calls are passed through the command line
interpreter (CLI) rather than the BASIC interpreter,
and the CLI has no 'knowledge' of how to
evaluate BASIC variables and deal with multi-
statement lines.

As we have shown, it is possible to pass
parameters over to OSBYTE in the X and Y
registers; it is also possible to read values back
from some of the system variables used by the
operating system. This can be done by using the
USR call or the machine code routine - as we've
already shown. You'll probably find the machine
code method easier to use when you're interested
in getting results back from the OS - the value
returned by the USR call has to be decoded to get
various bits of information out of it. Parameters
are passed back to BASIC in the X and Y registers,
and in some of the calls the carry flag is also used to
signal error conditions.

The results passed back in this way will
obviously depend upon the call - that is, on the
value passed to OSBYTE in the A register. Not all
OS BYTE calls pass results back to BASIC. However,
many of those that do provide us with some useful
information about the OS.

Two kinds of information may be passed back
by an OS BYTE call. The first is data read from some
part of the system, such as the user port, speech
processor or system variables. OSBYTE calls
passing back this sort of information are referred
to as 'read only' calls. A typical example of their
use is the OSBYTE call with A=l 29. This call is used
by BASIC to implement the INKEYO function.

The X and Y registers should be set up to pass
the required time delay over to the operating
system. The X register holds the low byte of the

time delay - in centiseconds - and the Y register
holds the high byte. Thus, to use this call to wait for
up to one second for a keypress, we can use the
section of machine code shown below. The X and
Y registers pass values back; if the carry flag is set
to 0, and the register holds a value of 0, then the
call was exited by a keypress. The ASCII value of
the key thus returned is to be found in the X
register. If Y holds 255 and C is set to 1, then no
key was pressed in the time period allowed. If C is
set to 1 and Y holds 27, this indicates that the
Escape key has been pressed.

The following section of code shows how this
OSBYTE call can be made. If the carry flag is set on
return from the subroutine a branch is made to a
further handling routine. This routine may test the
value in the register to determine whether a key
has been pressed or the Escape key has been hit.

1000 	LDA 	#129 /setOSBYTE
1010 	LDX 	#100 /parameters
1020 LDY 	#0
1030 	JSR 	&FFF4 /make OSBYTEcall
1040 	BCS 	error
1050 	RTS
1060 	error 	/code to deal with error

Other OS BYTE calls, especially those with a value in
A of between 166 and 255, are both read and
write calls, and they enable us to either read or
write certain system variables in the OS. You may
begin to wonder how the OSBYTE call knows
whether a read or write operation is required; it's
actually quite simple.

To write a value with the OSBYTE call, the call is
made with the X register holding the value we
want the OS BYTE call to write and the Y register set
to 0. To read a value back from one of these
systems variables, X is set to and Y is set to 225.
The call is then made. If a value is returned, it
resides in the X and Y registers.

THE USES OF OSBYTE CALLS
OSBYTE calls are the 'Civil Servants' of the
operating system, being involved in many of the
different OS routines. Filing systems, the
keyboard, Econet, the Break and Escape keys -
all are affected to a greater or lesser extent by
OSBYTE calls. The number of different OSBYTE
calls available makes it impossible to discuss them
all, but here are a few of the more useful ones not
covered in detail in the BBC Micro's user guide.

Function keys: * FX1 8 has no parameters, but is
quite useful. It deletes from memory the current
function key definitions, so is handy when you
want to define a function key more than once in a
program.

*FX225 to *FX228: If you've not programmed a
function key with a string, you can use these calls
to make the red function keys return an ASCII
value. For example, * FX225,n will cause function
key f to return the ASCII code for n when
pressed, fl will return ASCII code (n+1), and so
on. *FX226 does the same job for the occasions

	

BASIC/MACHINE CODE 	ASSEMBLY LANGUAGE

X%-4 	 LOX #4

Y%-3 	 LDY #3

BASIC/OS 	 A%-119 	 LDA #119

FX 119,4,3 	 CALL OSBYTE 	:: 	 JSR OSBYTE

	

OSBYTE VECTOR 	Three Into One
... .trDu9frappOYtL1.:....

-

	

ENTRY 	OS ROUTINE 	Oseortsi

	

ADDR1 	ROUTINE 1 	tIn9uâtês so{ta(eauejnt.

	

ADDR2 	ROUTINE2

	

ADDR3 	ROUTINE3 	thI1ttnthOdSaS.
$h

	

ADDR4 	ROUTINE4 	#18 aCc]4,Qr'tio
:::::::::::::::::::::: :::::::::: : :::: 	 : ADDR5 	ROUTINE5

.code,àusstb8ianâ1'..'

	

ADOR6 	ROUTINE6 	ptrcesarreserS.fo1

