
J

K

L

Basic Programming a

Files are handled in different ways according to
the version of BASIC used. The best way to find out
how your computer deals with them is to see what
the manual has to say about the OPEN and CLOSE
statements and try out a few examples. The
description we are presenting here is very
generalised and is designed to give an overall
impression of using files.

Files may be either sequential or random. In a
serial file, the information is stored with the first
piece of information first, followed by the next
piece, followed by the third and so on. A random
file is organised so that the computer can go
directly to the piece of data required, without
having to start at the beginning and go through the
data until the required piece has been located,
Watching a film is more like a serial file; you start at
the beginning and watch it all the way through to
the end. Watching a film on a video recorder at
home is a little bit like a random file; you can wind
the tape back and forth and watch any part you
choose. We shall consider only sequential files,
because they're more appropriate to cassette
systems.

Suppose you want to keep a record of average
daily temperatures for a week. These might be:

MCNDAY 13.6
TUESDAY 9.6
WEDNESDAY 11.4
THURSDAY 10.6
FRIDAY 11.5
SATURDAY 11.1
SUNDAY 10.9

To keep things simple, all this data will be treated
as numeric data, with Monday being Day 1 and
Sunday being Day 7. The data can then be
represented like this:

1,13.6,2,9.6,3,11.4,4,10.6,5,11.5,6,11.1,7,10.9

To store this data in a sequential file, the following
steps will be needed in the program:

OPEN the file
Write the data to the file
CLOSE the file

Whenever the OPEN statement is used it is
necessary to state whether we are writing data
from the computer to the file (an output) or
reading data from the file into the computer (an
input). In the BBC Micro, this is done using the
OPENOUT and OPEN IN statements. The equivalent
in Microsoft BASI S OPEN "0" and OPEN "I". Ashort
program fragment to write the data above into a
file (in Microsoft BASIC) would be:

100 OPEN ''0", #1, "TEMP.DAT"
110 PRINT #1,1,136,2,9.6,3,11.4,4.10.5,5,

11.5,6,11.1,7,10.9
120 CLOSE #1

The word OPEN in line 100 makes the file available
to the program. OPEN is followed by "0" to indicate
that data will go out from the program to be stored
in the file. This is followed by # 1, which tells the

computer that we'll be referring to this as file
number 1 in our program. Each file is given an
arbitrary number that will subsequently be used
with the INPUT# or PRINT# statements when we
want to read or write data to that file. Finally, we
have the filename in double quotation marks.
We've called our file TEMP. DAT to indicate that it
contains temperature readings, and is a data file
rather than a program.

A complete Microsoft BASIC program to enter
the data into a file and subsequently read it out and
print it is given below:

100 OPEN "0", #1, "TEMP.DAT"
110 PRINT# 1,1,13.6,2,9.6.3,11.4,4,10.6,5,11.5,6,

11.1,7,10.9
120 CLOSE #1
130 REM LINES 130 & 140 ARE 'DUMMY' LINES TO
140 REM REPRESENT INTERVENING PROGRAM
150 OPEN "I", #1, "TEMP.DAT"
160FORX=1TOT
170 INPUT #1, DAY, TEMP
180 PRINT DAY ";DAY,TEMP
190 NEXT X
200 CLOSE #1
210 END

This opens a file, numbered #1 and named
TEMP.DAT, writes data into it using the PRINT#
statement and then CLOSES the file. Later in the
program the same file is opened using both the
number and the filename (the number does not
need to be the same as when the file was created,
but the number used in the PRINT# or INPUT#
statements must be the same as the one assigned to
the filename when the file was opened). INPUT #1
in line 170 indicates that the input will come from a
file numbered #1 (that is, the file TEMP. DAT) and
not from the keyboard.

We shall leave this look at file handling for the
moment and return to the address book program
and some of the components involved in the
INITIALISE subsection of the program. First, let's
look at the amount of memory space required fora
single record in the address book file (the word
`file' here is being used in the database sense of
being the set of all related records, not in the
operating system sense of being a named group of
data stored on tape or disk).

The use of fixed-length fields is somewhat
wasteful of memory space, but makes the
programming a lot simpler. If we allow one whole
line for each field, with 40 characters to a line, all of
this will be saved in an array even if most of the line
consists of blank spaces. In some versions of BASIC,

however, when string arrays are DiMensioned,
each element can be up to 256 characters long.
The dimensioning merely sets the number of
elements in the array, not the size of each element.

If you have a BASIC that can handle multi-
dimensional arrays it would be possible to use a
separate dimension for each of the fields, but
many versions of BASIC cannot do this so we shall
explore alternative approaches. The simplest
method is to use a separate string array for each of

N

THE HOME COMPUTER COURSE 317


