TREAD LIGHTLY

In this short series of articles we shall be looking at the construction of a graphics game using BBC BASIC. The game is designed to run on the Model A, Model B and the Electron. As each phase of the game is developed, the appropriate section of the program will be listed, allowing you to build up the game with each instalment.

Routine Procedure

Unlike a flow chart, this structure diagram shows the procedural structure of the program rather than the flow of control through it. A capsule indicates the start of a REPEAT ... UNTIL loop; the lozenges are decision boxes when the test fails, the enclosing loop continues. The Level numbers show the program's block structure: all loop starts and procedure calls open a new block of program and a lower logical level compare this with the diagram on page 387

BBC BASIC has two major advantages for the programmer over 'standard' Microsoft BASIC: it is fast in execution and has features that allow you to structure programs. The essence of developing a structured program is to develop small, independent sections of code that can be individually debugged before assembly into a larger program. Any BASIC program can be structured to a certain extent by the use of subroutines to code each module of the program, but BBC BASIC has special types of subroutines, known as *procedures*. These can be thought of as blocks of code that are designed to do a specific job within a program. For example, let us imagine a piece of program that has to pause between each

instruction for a given time. In standard BASIC this may be written using a *dummy loop*; that is, a loop that does nothing except take time to execute:

10 PRINT "FIRST SECTION" 20 FOR I=1T0100: NEXT I 30 PRINT "SECOND SECTION" 40 FOR I=1T0100: NEXT I 50 PRINT "THIRD SECTION" 60 FOR I=1T0100: NEXT I 70 PRINT "FOURTH SECTION" 80 END

A better approach, however, would be to place the delay loop in a subroutine:

10 PRINT "FIRST SECTION" 20 GOSUB100 30 PRINT "SECOND SECTION" 40 GOSUB100 50 PRINT "THIRD SECTION" 60 GOSUB100 70 PRINT "FOURTH SECTION" 80 END 100 REM ** SUBROUTINE ** 110 FOR I=1TO100:NEXT I 120 RETURN

