
Where To Locate Machine
Code Instructbns

BBC Micro
In cirect mode Enter:
PRINT.-P4GE
thi5 gives the hex add •ess of
the start of your reserved
space. Then enter:
PAGE-PAGE+N
where N i; the decimal
nunber of bytes you wish to
reserve

TOP OF MEMORY

OPERATING SYSTEM

HIGH RESOWTIGH GRAPHICS

BASIC P AM

AND VARIABLES

HESERV:G SPACE

ERERATIAG SYSTEM

WORM SPACE

BOTTOM OF MEMORY

+ MACHINE CODE /PART 8

STARTING ORDERS

When a program has been written in its
Assembly language form, the machine code
programmer must provide directives for the
assembler at the beginning of the assembly.
We look at several of these `assembler
directives' to see what functions they
perform. These instructions may be used
with both processors.

In the last instalment of the course, we wrote a
simple machine code program that added two
numbers into the accumulator and stored the
result in memory. There was nothing very startling
about what the program did, but, in writing it, we
covered many points of significance to the
machine code programmer. Let's look at the
program again, with location addresses included,
as if it were to be loaded at $0000, and the
accumulated result to be stored at address $0009.
(This is purely for example's sake: any attempt to
use these particular locations would almost
certainly result in an unrecoverable crash). The
two versions of the program are:

Location

Address

Machi.e

Code

Assembly

Language

Z80 _____

0000 A7 AND A
0001 3E 42 LO A,$42
0003 CE 07 ADC A$07
0005 32 09 00 LD BYTE1 ,A
0008 09 RET

6502

0000 18 CLC
0001 A9 42 LDA #S42
0003 6907 ADC #S07
0005 800930 STA BYTE1
0008 60 RTS

Note that the fourth instruction (which stores the
accumulator contents at $0009) in both programs
does not specify a destination address in the
Assembly language column. Instead, it uses a
symbolic address, BYTE1. In the machine code
version of the instruction, however, we see the op-
code for `transfer the accumulator contents
followed by 09 00, the two-byte to-hi form of the
address $0009.

This is another aspect of the translation (or
assembly) process from Assembly language to
machine code. Just as we use reasonably
meaningful instruction mnemonics (STA and RET,
for example, instead of hex codes such as 8D and
C9) because they make the programs easier for us
to read and write, so we will often use symbols
such as BYTE1 instead of unfriendly hex addresses
or numbers like $0009. This is no different from

initialising variables with constants in a BASIC
program, and the reasoning is exactly the same in
both cases — the program is made more readable,
the possibility of errors occurring when writing
such numbers is reduced, and the program is
made more easily manipulable. For example,
changing the statement in which the constant
value is assigned to the variable in the first place
will cause the new value to be used throughout the
program automatically, needing no further editing
on the programmer's part.

This is easy to understand when talking about
Bnstc programming, but where in our Assembly
language program is the equivalent of the BASIC

statement LET BYTE 1=S0009? At present there isn't
any such instruction. When we actually come to
assemble the Assembly language into machine
code we must remember to do this ourselves. If,
however, we were using an assembler program to
do the assembly for us, then we could make such
an assignment statement at the beginning of the
program (we give the Z80 version of the program
here, although these assembler directives may be
used with both processors):

0000 BYTE1 EOU S0009
0000 A7 AND A
0001 3E 42 LC, A $42
0003 CE 07 ADC A $07
0005 32 09 00 LC, B?TE1 A
0003 C9 RET

BYTE1 is placed in a column of its own, known as
the label field, which we will say more about later.
In the op-code field, a new mnemonic (EQU,
standing for `equate' or `is to be set equal to..:) is
used; and, in the operand field, the value that is
to be assigned to BYTE1 is given (in this case,
S0009).

It is important to note that although EQU
appears in the op-code field, and looks like a
mnemonic, it isn't an Assembly language
mnemonic and doesn't belong in either the Z80
or 6502 instruction sets. Such a mnemonic is
called a pseudo-op or an assembler directive. EQU
tells the assembler program that `Whenever it
finds the preceding alphanumeric symbol (BYTE1
in this case), it must replace it by the value that
follows the directive ($0009 here)'. Remember
that when we use an assembler program we write
only the Assembly language program, either as a
tape disk file or directly at the keyboard, and
then call the assembler program to turn it into a
machine code program. The output of an
assembler is usually a full Assembly listing like
those we've been producing, plus the machine
code program consisting simply of a string of hex

156 THE HOME COMPUTER ADVANCED COURSE

