
loose-leaf paper is then used for each level of
refinement and the pages for each program block
or module can be easily kept together. Here is the
numbering system for our program:

IMAIN PROGRAM
BEGIN

1.INITIALISE
2. GREET
3.CHOOSE

4.EXECUTE

END

As mentioned above, we are leaving the
development of INITIALISE for the moment, and
concentrating on developing the GREET and
CHOOSE procedures.

II 2 (GREET)
BEGIN

1.Display greeting message
2.LOOP (until space bar is pressed)

EN D.LOO P
3.Call *CHOOSE*

END

1112 (GREET) 1 (display message)
BEGIN

1.Clear screen
2.PRINT greeting message

END

III 2 (GREET) 2 (LOOP wait for space bar)
BEGIN

1. LOOP (until space bar is pressed)
IF space bar is pressed
THEN

END LOOP

END

III 2 (GREET) 3 (call 'CHOOSE')
BEGIN

1. GOSUB'CHOU^;
END

At this point it should be clear that 111-2-1 and 111-2-3

are ready to be coded directly into BASIC, but that
111-2-2 needs another stage of refinement:

IV 2 (GREET) 2 (LOOP)
BEGIN

1. LOOP (until space bar is pressed)
IF INKEYS is not space THEN continue

ENDLCOP
END

We are now at the point where all the coding into

Basic Programming

Branching Out
As a long program is developed, its structure takes on the
appearance of a tree, with more branches at each successive stage
of refinement

In the last instalment of the Basic Programming
course, we took a look at some of the problems
involved in searching through a list to find a
specific item — assuming that the list had already
been sorted into order. This is a topic to which we
will return in more detail when the time comes to
start writing search routines. In the meantime,
however, we will develop the theme of top-down
programming to produce code for the second two
parts of the main program. This contains four calls
to subroutines or procedures:

MAIN PROGRAM
3EGIN

INITIALISE ;procedure)
;.,

	

	 GREET (procedure)
CHOOSE (procedure)
EXECUTE (procedure

=ND

The first procedure, 'INITIALISE*, will involve
numerous fairly complex activities — setting up
arrays, reading data into them, performing various
checks and so on — and we will leave the details of
this procedure until later. The next two parts of the
main program comprise the GREET and CHOOSE
procedures. In developing these procedures, we
will suggest a methodology that helps prevent the
many layers involved in top-down program
development from becoming disorganised and
confusing.

The problem with the top-down refinement
approach to program development is that the
number of steps needed before we are ready to
start coding into a high level language is
indeterminate. Two or three steps may be enough
for simple procedures, but more difficult
procedures may require many steps before the
problem has been sufficiently analysed to allow
`source code' (as the high level language program is
called) to be written. This means that writing a
program using this method is similar to drawing a
tree lying on its side. As the `branches' proliferate
(that is, as the refinements become more detailed)
they take up more space on the page. Eventually, it
becomes impossible to fit everything onto a single
sheet, and that is the point where it becomes easy
to lose track of what's going on.

One very effective way to organise the
documentation of the program is to number the
stages of its development systematically. We have
used Roman numerals to indicate the level of
refinement and Arabic numerals to indicate the
subsection of the program. A separate sheet of

292 THE HOME COMPUTER COURSE


