LAST IN FIRST OUT

The stack is a defined area of computer
memory attached to the CPU that acts as a
convenient workspace and takes a vital
part in subroutine execution. It is easily
accessed through the stack instructions,
which permit the quick copying and
restoring of register contents. We examine
the stack and its operation in detail here.

Memory management is the essence of Assembly
language programming, and most of the
instructions we've studied so far in the course are
concerned with simply loading data to or from
memory locations. These locations have been
accessed in a variety of ways — the addressing
modes — but the instructions concerned have
always taken a specific memory address as part of
the operand. There is a class of instructions,
however, that access a specific area of memory
but do not take an address as operand. These
instructions operate on the area of memory
known as the stack, and they are known as the
stack operations.

The stack is provided for both the central
processing unit and the programmer to use as
temporary workspace memory. It is a kind of
‘scratch-pad’, easily written to, read from and
erased. The stack operations copy data from the
CPU'’s registers into vacant areas of the stack, or
copy data from the stack back into the CPU
registers. These instructions require no address
operand because a specified CPU register, the
stack pointer, always contains the address of the
next free stack location. Thus, anything written to
the stack is automatically written to the byte
pointed to by the stack pointer, and data loaded
from the stack is always copied from the stack
location last written to. Whenever a stack
operation is executed, the stack pointer is
adjusted as part of the operation.

In 6502 systems the stack is the 256 bytes of
RAM from $0100 to SO1FF; in Z80 systems the
location and size of the stack are determined by
the operating system, but may be changed by the
programmer. This variation reflects the
differences in the internal organisation of the two
microprocessors (see the diagram on page 136):
the 6502 has a single-byte stack pointer, while the
Z80 stack pointer consists of two bytes.

The contents of the 6502 stack pointer are
treated by the CPU as the lo-byte of the stack
address, and a hi-byte of S01 is automatically
added to this by means of a ‘ninth bit’ wired into
the stack pointer. This extra bit is always set to
one, so 6502 stack addresses are all on page one.

The Z80 stack pointer is a two-byte register
capable of addressing any location between
$0000 and SFFFF — the entire address space of the
Z80 itself. The stack can thus be located
anywhere in RAM, and its location can be
changed by the programmer. This is not
recommended, however, since the operating
system initially sets the stack location and stores
data on it. As the operating system may interrupt
the execution of any machine code program at
any time, and expect to find data relevant to its
operation on the stack, any alteration of the
location of the stack will mean that the data will
not be available to it and the system may crash.

As an example of the use of the stack, consider
the following routine to exchange the contents of
two memory locations, LOC1 and LOC2:

The contents of LOC1 are loaded into the
accumulator, and from there copied or ‘pushed’
onto the stack. The contents of LOC2 are then
loaded to the accumulator, and stored in LOC1.
The contents of the top byte of the stack are then
copied or ‘popped’ into the accumulator, which
restores the original contents of LOC1 to the
accumulator. This is copied to LOC2, and the
exchange is complete. Notice that the stack
operations ‘saved’ the contents of LOC1 in
memory as long as needed, but without the
program specifying any memory location —
except, by implication, the next free location on
the stack.

This program fragment shows us a lot about
stack operations. Primarily, they are reciprocal
and sequential. The last item pushed onto the
stack is retrieved by the next pop from the stack.
Successive pushes with no intervening pops write
data into successive stack locations, one ‘above’
the other, while pops without intervening pushes
access successive locations ‘downwards’ from the
current ‘top’ of the stack.

To visualise the stack, imagine writing notes on
postcards and stacking them next to you on the
desk, then reading and discarding cards until the
stack is empty. The most recently written of the
cards remaining in the stack is always the one on
top. For this reason the stack is known as a Last
In First Out (LIFO) data structure. Its converse, a
First In First Out (FIFO) structure, is a queue. It

THE HOME COMPUTER ADVANCED COURSE 257

