
 MACHINE CODE/PART 16

the limits of a byte (in other words, the range of
decimal numbers 0-255). Once we encountered
the meaning and appropriateness of binary
arithmetic, the limitations of the decimal system
for dealing with the world of Assembly language
became apparent. In exploring the idea of paged
memory we saw how the size of the logical pages
must be a function of the number base, and in a
binary system that means that the page size must
be a power of two. Two to the power of eight gives
256 — the magic number in an eight-bit
microprocessor system.

Binary very quickly became too unwieldy and
too prone to error for use as a numbering system,
and we passed on to hexadecimal (number base
16) arithmetic. We saw how the eight-bit byte can
be fully represented by two hex digits, from $00
to $ FF, one digit representing the state of the lower
four bits, and the other standing for the upper four
bits of the byte.

The way that BASIC programs are stored in the
program area was exhaUstively examined. By
describing tokenisation as another form of
machine code, we gave a useful insight into the
operating system. Our discussion of end-of-line
markers showed how the BASIC interpreter handles
the difficulty of telling where one piece of code
ends and another starts, and the Commodore's
link addressing introduced both the lo-hi address
convention and the idea of indirect addressing.

From there we moved directly into Assembly
language itself. We started from the primitive
operations of the CPU as directed by the eight-bit
op-codes that constitute its program instructions.
With the idea of coding so thoroughly explored, it
was a short step to Assembly language
mnemonics. Once we had made that step it
became clearer that programming in machine
code or Assembly language or BASIC was still just
programming, and that what counted was solving
the logical problem before .worrying about how to
code the solution. Problem-solving has been the
central theme of the course. But the obscurity of
some of Assembly language's concepts forced our
attention first to clearing the haze of confusion
that besets most people on first contact with low-
level languages.

The course proceeded to spend some time on
the practicalities of loading and running machine
code programs on computers that were more or
less dedicated to running BASIC programs. We
looked at system variables and operating system
pointers on the BBC Micro, Spectrum, and
Commodore 64, and learned how to 'steal' space
from BASIC.

We glanced at the architecture of small
computer systems and the Z80 and 6502 CPUs,
and moved on to begin writing Assembly
language programs that manipulated memory and
the accumulator. Assembler directives or pseudo-
ops were introduced here, a step towards
practicality and the real world, but also a step away
from machine code, manual assembly, and the
laborious detail of low-level programming.

318 THE HOME COMPUTER ADVANCED COURSE

The need for the logical constructs of a
programming language was now obvious, and we
turned to considering the processor status register
(PSR). Its role as a recorder of the results of CPU
operations was immediately illustrated in an
introduction to binary arithmetic, using the 'add
with carry' instruction. The central role of the PSR
and, in arithmetic, of the carry flag, was obvious as
soon as it was seen. The course has concentrated
on the processor status register and the associated
instructions since then.

We briefly examined the various addressing
modes; indexed addressing was Oven most
attention because of its importance in handling
loops, lists and tables. The need for a class of
instruction to change the flow of control in a
program is evident once these structures are
introduced, so we began to examine the
conditional branch instructions while still
exploring the potential of indexed and indirect
addressing. With conditional branching, primitive
arithmetic and array-type structures, we have
almost all the bones of any programming
language. Fleshing out the form through practice
and systematic investigation is the remaining task.

The Assembly language subroutine call and
return was examined both for itself and as a way of
introducing the last unexplored area of the
operating system — the stack. Seeing how it
works, what it is for, and how we might use it
introduced some new ploys to the repertoire of
machine code programming, while a more
searching look at the CPU registers and their
interactions introduced new possibilities in the
manipulation of memory and the microprocessor.

Finally, with a working knowledge of the
architecture of the microprocessor and a
vocabulary of op-code instructions, we
approached binary arithmetic. The oddities of
subtraction and two's complement, and the
complexities of multiplication and division have
all been covered in detail. Looking ahead, we will
investigate the practical craft of machine code
programming by investigating and exploring
specific tasks for the processors we have initially
concentrated our attention on (the Z80 and the
6502), as well as other processors, such as the
6809 CPU used by the Dragon 32 and 64.

Answers To Exercises On Page 299
1)The fastest-running solution is certainly a routine
written specifically for 16-bit multiplicands, on the
same lines as the eight-bit routine in the last
instalment. On the other hand, if you split 16-bit
multiplication into two separate eight-bit multipli-
cations (multiplier by lo-byte, followed by multiplier
by hi-byte), then you can call the existing eight-bit
routine twice, adjust for a carry out of the lo-byte, and
store the results in the product bytes.
2)A multiplication routine using repeated addition
consists simply of a loop whose counter is the value of
the multiplier; each time the loop is executed, the
multiplicand is added into the product.

471i

