
El
	

OPERATING SYSTEMS/MACHINE CODEI

THE FX EFFECT

Having introduced the BBC Micro's
operating system in recent instalments, we
return to the subject with a closer
examination of OSBYFE calls, a
convenient way of accessing many of the OS
functions of this computer.

When we first considered how to access the
operating system of the BBC Micro (see page
879), we briefly discussed a group of OS calls
known as OS BYTE calls. These enable us to modify
the behaviour of various parts of the operating
system. For example, the OSBYTE call *FX41
enables us to change the way in which the
computer responds when one of the cursor keys
on the BBC keyboard is pressed.

When you realise that there are well over 10001
these calls in the Version 1.2 OS (see page 858),
it's not surprising that they offer us a convenient
way of accessing many of the OS functions of the
BBC Micro. We've already seen that the use of
indirect OS calls provides us with insurance
against changes in the hardware and software
configuration of the machine; OSBYTE provides us
with a major method of using OS routines.

Before we go on to examine OS BYTE in detail, it
should be pointed out that if your machine has an
old Version 0.1 OS, some of the OSBYTE calls
mentioned in this course and in the BBC user
guide are not actually supported. You can find out
which version your machine has by typing *HELP
<RETURN'.

Let's look first at how OS BYTE is used from BASIC

and machine code. Like many BBC OS calls,
OSBYTE is vectored (see page 878). The OSBYTE
vector is at addresses &20A and &20B. The ways in
which we can issue an OSBYTE call are shown
below. These will all execute the OSBYTE call
mentioned above - * FX4, 1:

Using FX 	Using USH 	 Using
From BASIC 	From BASIC 	Machine Code

*FX41 A%-4:X%-I:D%=USR(&FFF4) LDA 414
LOX #1
JSR &FFF4

It's clear from these three examples that the
address at which we call the OSBYTE routines is
&FFF4, and that parameters are passed over to the
OSBYTE call in the A, X and registers of the 6502
processor. Assigning a value to A°!0, X% or Y%
from BASIC and then calling a machine code
routine with the USR or CALL command from BASIC

will enter the machine code program called with
the A, X and Y registers of the processor holding

the values that were in the A 0!0, X°!o and Y%
variables, respectively. The use of USR in the
second example enables us to get a result from a
machine code program back into a BASIC variable.
This is useful with regard to some OSBYTE calls, as
they can return information to BASIC - we will
discuss this in detail later.

In the third example, we use a short machine
code program to make the OS BYTE call; we simply
load the necessary registers with the appropriate
values and then call OSBYTE at its call address of
&FFF4. These examples also show how the
parameters (4 and 1) passed to the OS with an FX
call, correspond to the parameters passed in the
A, X and Y registers when we call OS BYTE routines
from machine code or with a USR call.

No matter which method of calling the OSBYTE
routine we choose, the contents of the A register
always specify which of the many OSBYTE routines
is to be used. X and Y registers are then used to
pass over parameters to the desired OSBYTE
routine. Some OSBYTE calls require no
parameters; some require just one parameter to be
passed over in the X register; and others, less
commonly, require two parameters, passed over
in the X and Y registers.

Here are some examples of all these types of
OSBYTE calls:

No Parameters One Parameter Two Parameters
*FXO 	*Fx41 	*Fx151 96 200

There are a couple of points to note about calling
OS BYTE routines via the use of the *FX call. One is
that OSBYTE is totally ignorant of BASIC variables -
like all * commands. Executing the code below
will give the Bad Command error message:

a=4: b=1
*FX a b

However, we can get round this problem by
passing the FX command to the OS using OSCLI:

10 DIM C 100
20 a=4
30 b=1
40 $C=**FX "+STR$a+","+STR$b
50 X%=C MOD 256
60 Y%=C DIV 256
70 CALL &FFF7

The other point to note about FX calls is that you
cannot put anything else on a program line after
them. Thus:

*FX 4,1:PRINT "O000ps'"

will generate another Bad Command - the OS

THE HOME COMPUTER ADVANCED COURSE 957

