
vertical direction, implying that the height of each
character is 32 units. The boundaries of the screen
can now be worked out in terms of high resolution
co-ordinates for the MOVE and DRAW commands.
The Screen Layout illustration shows what these
boundaries are.

We can now calculate the co-ordinates of the
bottom left corner and the top right cOrner of the
minefield (all other co-ordinates for the border
follow from these two points). As we can see from
the diagram, the co-ordinates of the bottom left
corner of the border are (120,188). The co-
ordinates of the top right corner are (1152,992).

The following procedure draws a border
around the edge of the defined area. GCOL 0,1 sets
the logical colour that will be used for graphics.
The first number defines the type of plotting,
which will be discussed later, and the second
defines the colour. In mode 5, logical colour 1 is
normally red. The MOVE commands move the
graphics cursor (without drawing) from the origin
to the bottom left corner of the border. The DRAW
commands that follow it draw straight lines from
the current position on the screen to the point
specified.
24700EF PROCdraw_border
2480GCOL 0,1
2490M0VE 20,188
2500DRAW 20,992
25100RAW 152,992
2520 DRAW 152,188
2530DRAW 20,188
2540ENDP01C

THE INTERNAL TIMER
The BBC and Electron have an internal timer that
can be accessed easily from BASIC using the
reserved variable, TIME. When asked to print the
value of TIME, the computer will return a number
that corresponds to the time, given in hundredths
of a second, since the variable was last set to zero.
The procedure 'set-time' prints the word 'Time', its
starting value and sets the variable TI ME to zero.
This procedure is called during the set-up routine
and starts the clock for the game.
2o400EF PROCset_timo
2650PRINTTA8(2,27)"Tme02;00"
2660TIME=0
2670ENDPROC

During the main loop of the program, the time
displayed on the screen must be updated. To
display the time in seconds would be very
straightforward; we would simply divide the
variable TIME by 100, to convert to seconds, print
this value to the screen, and so on. However, it is
possible to convert TIME into minutes and seconds
by making use of the BBC BASIC commands DIV
and MOD. TI ME DIV 100 would return the number of
seconds as a whole number; (TIME DIV 100) MOD 60
would count the seconds from zero to 59 and then
start again from zero. This is because the MOD 60
command gives the value of the remainder after
division by 60. So, for example, 63/60 is 1, with a
remainder of 3. (63/60) MOD 60 would therefore be
3. The minutes can be similarly isolated and
displayed by using (TIME DIV 6000) MOD 60.

This is the procedure that will be used to update
the time during the game:

2900DEF PROCuodattime
2910secS=STRSC((12100-TIME) DIV 100)MOD 60)
2920minS=STRS(I2100-TIME) 01V 6000)MOD 60)
29300EM .. ADD LEADING ZEROS t**
2940secS=LEFTS(zeroS,2-LEN(sect)).sec$
2950minE=LEFT*(zero4,2-LEN(minf)).mi.s
2960ttmeS=mant.":".sect
2970PRINTTA8(11,27);t1mo$
2080ENDPROC

As you can see from this procedure, we have gone
a stage further. As well as being divided into
minutes and seconds, the time will, in fact, be
counted backwards from two minutes to zero. In
addition, a short string-handling routine is
included to ensure that the displays for the seconds
and minutes always have two digits, by adding
leading zeros if required.

Two other short procedures are still required to
complete the setting up of the game. During the
game, the player has four lives; therefore, we need
to display, at the bottom of the screen, the number
of lives remaining. Initially, this will be three lives,
displayed as three of the 'assistant' characters we
defined in the last instalment (see page 393). A
variable 'count' will be used to determine the
number of lives used. Initially, this will be one.
26900EF PROCset men
2700men$=CHRS(2i6).CHRS(226)+CHR$(226)
2710count=1
272000LOUR I
2730PRINTTA8(2,30);ment
274000LOUR 2
2750ENDPROC

The final set up procedure initialises the scores and
displays them on the screen. The value of 'hiscore$'
is not set within this procedure as the procedure is
called each time the game restarts. Instead, we
shall set its initial value at the beginning of the
program only.

2770DEF PROCset_score
2780score=0:scorea="00000"
2790PRINTTA8(2,28)"Score00000"
2800PRINTTA8(2,29)"1

.
11 score ";hi_scoreS

2810ENDPROC

Now that all the procedures for the setting up part
of the program have been assembled, we can
construct a higher-level procedure to call them all.
In the last instalment we called all the procedures
we had assembled directly from a short main
program. You must now delete those lines and add
these lines:
1.8800EF PROCsetup
189000LOUR 2
1900end_41a9=0
1 91 OPROCinitial ise_var,abl es
1 920PR0Cde4 ne_charac ter;
1940PROClay_mines(40)
1950PROCdraw_border
1960PROCset_t,me
1970PROCset_score
1980PROCset_men
1990PROCposition_chars
2000ENDPROC

We are now at the stage where we can write a short
main program to call the 'setup' procedure and
update the time in a REPEAT... UNTIL loop. Add
these lines to your program:

10 REM **** CALLING PROGRAM **"
20 hiscore$="00000"
30 PROCsetup
40 REPEAT
50 PROCupdate time
60 UNTIL TIME>12099
70 END

THE HOME COMPUTER ADVANCED COURSE 405

