vertical direction, implying that the height of each
character is 32 units. The boundaries of the screen
can now be worked out in terms of high resolution
co-ordinates for the MOVE and DRAW commands.
The Screen Layout illustration shows what these
boundaries are.

We can now calculate the co-ordinates of the
bottom left corner and the top right corner of the
minefield (all other co-ordinates for the border
follow from these two points). As we can see from
the diagram, the co-ordinates of the bottom left
corner of the border are (120,188). The co-
ordinates of the top right corner are(1152,992).

The following procedure draws a border
around the edge of the defined area. GCOL 0,1 sets
the logical colour that will be used for graphics.
The first number defines the type of plotting,
which will be discussed later, and the second
defines the colour. In mode 5, logical colour 1 is
normally red. The MOVE commands move the
graphics cursor (without drawing) from the origin
to the bottom left corner of the border. The DRAW
commands that follow it draw straight lines from
the current position on the screen to the point
specified.

Z4TODEF PROCraw_border
24506000 0,1

24%0MOVE 120,188
2500DRAL 120,792

Z510DRAEW |

Z320DRAk =

Z5Z0DRAW 120,188

Z540ENDPROC

THE INTERNAL TIMER

The BBC and Electron have an internal timer that
can be accessed easily from Basic using the
reserved variable, TIME. When asked to print the
value of TIME, the computer will return a number
that corresponds to the time, given in hundredths
of a second, since the variable was last set to zero.
The procedure ‘set-time’ prints the word ‘Time, its
starting value and sets the variable TIME to zero.
This procedure is called during the set-up routine
and starts the clock for the game.

2640DEF PROCset_time

ZASOPRINTTAB(2,270 "Time 0Zr0o"

cASOT IME=D
ZSTOENDPROC

During the main loop of the program, the time
displayed on the screen must be updated. To
display the time in seconds would be very
straightforward; we would simply divide the
variable TIME by 100, to convert to seconds, print
this value to the screen, and so on. However, it is
possible to convert TIME into minutes and seconds
by making use of the BBC Basic commands DIV
and MOD. TIME DIV 100 would return the number of
seconds as a whole number; (TIME DIV 100) MOD 60
would count the seconds from zero to 59 and then
start again from zero. This is because the MOD 60
command gives the value of the remainder after
division by 60. So, for example, 63/60 is 1, with a
remainder of 3. (63/60) MOD 60 would therefore be
3. The minutes can be similarly isolated and
displayed by using (TIME DIV 6000) MOD 60.

This is the procedure that will be used to update
the time during the game:

2900DEF PROCupdate_time
CL1Z2100-TIMEY DIV 100:HOD &0

ZFl0seck=ETRE!

BBC GRAPHICS/PROGRAMMING PROJECTS 4:

ZPZ0min®=STR$(CC1Z2100-TIME) DIV &000)MOD &0y

ZFI0REM =+ ADD

LEADING ZEROS ==

Z¥d0secH=LEFT$(zero$,2=LEN(secs)) +sect

Z2950ming=LEFT®

ZTBOENDPROC

(zero®,2=-LEM(min$)+mirs
ZFA0t imes=minEs"

ZRFOFRINTTABCLL ,27) jtimes

As you can see from this procedure, we have gone
a stage further. As well as being divided into
minutes and seconds, the time will, in fact, be
counted backwards from two minutes to zero. In
addition, a short string-handling routine is
included to ensure that the displays for the seconds
and minutes always have two digits, by adding
leading zeros if required.

Two other short procedures are still required to
complete the setting up of the game. During the
game, the player has four lives; therefore, we need
to display, at the bottom of the screen, the number
of lives remaining. Initially, this will be three lives,
displayed as three of the ‘assistant’ characters we
defined in the last instalment (see page 393). A
variable ‘count’ will be used to determine the
number of lives used. Initially, this will be one.

28%0DEF PROCset_men

A700men®=CHR$(2241 +CHRE(2250 +CHR® L 2240

2710count=i
2720C0OLOUR 1

Z730PRINTTAB(2,300 jment

2740C0OLOUR 2
Z7S0ENDFRROC

The final set up procedure initialises the scores and
displays them on the screen. The value of ‘hiscoreS’
is not set within this procedure as the procedure is
called each time the game restarts. Instead, we
shall set its initial value at the beginning of the

program only.

EZ770DEF FROCzet_score

27B0score=0:score®="00000"

Z7FOPRINTTABC(Z,28) "Score

ZBOOFRINTTAB(Z,29"H| score ";hi_zcores

281 0ENDFROC

Now that all the procedures for the setting up part
of the program have been assembled, we can
construct a higher-level procedure to call them all.
In the last instalment we called all the procedures
we had assembled directly from a short main
program. You must now delete those lines and add

these lines:

| BB0CEF PROCse tup

1870COLOUR 2
1#00end_+1ag=0

IPIOPROCIin| tial ise_variables
1P20PRQCdef ine_characters

1 740PROCT ay_minestd0)

1 PS0PROCraw_border
1760PROCset _time
1970PROCze t_zcore

| #BO0PROCse t_men

t #70PROCposi tion_chars

ZO0DENDFROC

‘We are now at the stage where we can write a short
main program to call the ‘setup’ procedure and
update the time in a REPEAT... UNTIL loop. Add
these lines to your program:

10 REM **** CALLING PROGRAM ****

20 hiscoreS="00000"
30 PROCsetup

40 REPEAT

50 PROCupdate time

60 UNTIL TIME>>12099

70 END

THE HOME COMPUTER ADVANCED COURSE

405

