
Basic Programming W
few editing commands) or re-typing the correct
line. Whenever the BASIC interpreter encounters
an error in syntax or logic it stops the execution of
the program and reports the error. Fixing the bugs
is as simple as trying a new line in place of the
erroneous line, and typing RUN<CR> again.

Basic's Disadvantages
The BASIC programming language has a number
of disadvantages, however, some of which are
subtle and some glaring. Because it is interpreted
(although a few compiled versions of BASIC do
exist) it runs very slowly. If speed is not very
critical (as in a program to calculate your current
hank balance, for example) the slowness of
interpreted BASIC will be of no consequence. If, on
the other hand, speed is of the essence (as in a
screen animation program using graphics, or a
`clock' used to time reactions in a laboratory
experiment) interpreted BASIC is likely to be far
too slow.

If you need speed in your programs, there are
two routes to follow: programming in either
machine code or Assembly language (see page
448) — a difficult and time consuming process -
or programming in a compiled language such as
PASCAL or FOR;-H. Compiled languages are not
difficult to learn, but the source code (the original
program) is almost sure to contain bugs, which
the compiler will find when it tries to compile the
program. These are difficult to rectify, compared
with bugs in BASIC. After corrections have been
made to the source code, the program will have to
be compiled all over again. Most compilers take
two or three `passes' through the source code, and
each pass is likely to result in error messages, each
of which will have to be corrected before the
program can be re-compiled.

Producing a correctly compiled program is
likely to be a far more time consuming processs
than achieving a working program in interpreted
BASIC. On the other hand, BASIC is likely to lead
the novice programmer from the `straight and
narrow' by allowing bad programming techniques
that highly structured languages such as PASCAL
would reject. BASIC allows the programmer to
write very careless programs, full of GOTOs for
example, and these bad habits can make the
transition to more advanced languages difficult.

What Next After Basic?
BASIC is a flexible language, and one that is not
difficult to learn. It has excellent string handling
facilities, but is slow and fails to take full
advantage of the power of a home computer. On
the other hand, more modern languages, such as
PASCAL and FORTH, offer programming facilities
either difficult or impossible in BASIC.

PASCAL was also devised as a teaching
language, and specifically designed to encourage
the development of well constructed, `structured'
programs. PASCAL is a compiled language, which

means that users encounter numerous errors
picked up by the compiler (after the source code
has been written and before the compiled 'object
code' can be run), and this can be very frustrating.
Novice PASCAL programmers also tend to find the
restraints of the language, such as the need to
declare all variables at the beginning of the
program (and to state what type they are — real,
integer, etc.), to be an impediment to free and
flexible programming.

On the other hand, PASCAL demands that the
programmer thinks through the logic of the
program properly before writing. Programs in
PASCAL are likely to throw up numerous syntactical
errors in the source code. But they are also more
likely to be well designed and less likely to contain
fundamental logical errors.

FORTH has recently become a very popular
alternative to BASIC as a programming language on
home micros. Although FORTH is not as difficult to
learn as Assembly or machine code language, it
must be said that it is far less `intuitive' than either
BASIC or PASCAL. Even so, FORTH has many unique
merits that make it a contender as the
programmer's second language.

Although FORTH is a high level language, it runs
nearly as fast as machine code, owing to the
unique way it works. Whereas languages such as
BASIC have a fixed number of statements and
commands, FORTH users can define their own
vocabulary.

The keyword PRINT in BASIC means that any
character following it enclosed in double quotes
will be printed on the screen. Nothing the
programmer does can alter this. In FORTH, PRINT
could be defined to produce, say, a listing on the
screen of the hexadecimal equivalents of the
ASCII codes, printed in a vertical column, of the
characters in a string.

FORTH gives the programmer the power to
define any word to mean whatever is wanted and
to produce the desired results whenever it is used
from then on. Not only is FORTH extremely flexible
in this way, but it also produces programs that can
be compiled to object code (see page 184) which
are nearly as compact and fast running as machine
language programs.

Although there are many programming
languages available, most hobbyists moving on
from BASIC will be inclined to choose from
Assembly language, PASCAL and FORTH. Very
briefly, the advantages and disadvantages of each
can be summarised thus:

BASIC

Easy to learn
Easy to remember
Easy to de-bug
Slow in execution
Uses lots of memory
Does not encourage structured programming

Assembly Language:
Not very easy to learn
Not very easy to remember

THE HOME COMPUTER COURSE 475


