
NOSE-OPERATED KEYBOARD

The MATE (Memory Assisted
Terminal Equipment) system
was developed at Essex
University, England, in 1978
on a Vector 111 computer.
This system was developed by
a severely spastic
programmer, Geoff Busby,
who could manipulate the
keyboard only with his nose.

MATE has a special
keyboard that does not
require a shitt key to be held
down at the same time as
another key for some
characters, and stores a
database of words that can be
input by a single keystroke
without typing all characters

COMPUTER SCIENCE /LOGICAL OPERATORS

PROGRAMMER'S
LOGIC
So far in this series on logic we have looked
at the design of hardware using logic gates,
but the logical operators AND and OR are also
useful software tools within programs.
Most BASIC dialects and machine code
instruction sets include AND and OR in their
commands.

These two logical operators have several uses in
both machine code and BASIC. The most familiar
use of AND and OR is to relate two or more
statements within a conditional statement. For
example, try predicting the outcome of this BASIC

program:

10 FOR 1=1 TO 5
20 FOR J=1 TO 5
301F 1=3 AND J=2 THEN PRINT I,J
40 N EXT J
50 NEXT
60END

The program will run through the pair of nested
loops but will print out the values of I and J only if
1=3 and J=2. This program will therefore print on
the screen the following result:

32

OR can be used in much the same way. If we
amend he 30 to read:

30 IF 1=3 AND J=2 OR J=4 THEN PRINT I,J

The following output is produced:

1 4
24
32
34
44
54

The computer carries out the AND operation in
priority to the OR operation. I and J will be
printed out if either :=3 and J=2, or if J=4. The
order of priority can be changed by the use of
brackets. What will be the output from the
program if line 30 is again amended to:

3C IF 1=3 AND (J=2 OR J=4) THEN PRINT I.J

ISOLATING BITS IN A REGISTER
Many home computers use special registers to
control various machine functions. Each bit
within such a register may control a different
aspect of that operation. For example, on the
Commodore 64 there is an eight-bit register that
controls the switching on and off of sprites. Each

bit in the register relates to one of the eight sprites
available. If any bit in the register is set to a one
then the sprite that it controls is visible on the
screen. If the bit is set to a zero then the sprite is
switched off and cannot be seen. Using BASIC it is
a simple matter to switch on any combination of
sprites by working out the required eight-bit
binary number and POKEing its decimal
equivalent into the register. This method,
however, doesn't take account of the state of the
register prior to the POKE command and may
result in switching off sprites that were previously
on. The solution to this problem is to develop a
technique that will allow the programmer to
isolate the bits that are needed to be changed
without altering any of the others.

In order to demonstrate this technique let us
assume that originally sprites 0, 1, 5 and 6 are
turned on. The register controlling the switching
will look like this:

Sprite Number 7 6 5 4 3 2 1 0

Correspoiding it 0 1 1 0 0 0 1 1

Let us now switch on sprite 4, by PEEKing the
register, ORing the contents with 16 (00010000
in binary) and POKEing the result back.

Original Byte 0 1 1 0 0 0 1 1

ORed With 0 0 0 1 0 0 0 0

Gives Nea p Byte 0 1 1 1 0 0 1 1

Using the BASIC command POKE reg,PEEK(reg)
0R16 we can now turn on bit 4 in the register. To
turn bit 4 off again we must PEEK the register and
AND its contents with 239.

New Byte 0 1 1 1 0 0 1 1

AND 1 1 1 0 1 1 1 1

Original Byte 0 1 1 0 0 0 1 1

Notice that the number 239 can be quickly
calculated by subtracting 16 from 255. Using the
BASIC command POKE reg,PEEK(reg)AND239 we
have restored the register to its original state.

These techniques are more widely applied in
machine code programming where altering the
state of control, registers may form an important
part of the program.

4

66 THE HOME COMPUTER ADVANCED COURSE


