
1111111111111111111111111111•1114

Tree Structure
Before the best route through
the maze can be found, a 'tree'
representing the relationships
between squares within the
maze has to be constructed.
Each node is considered in turn,
creating lower levels of nodes.

Level 1 nodes are one square
removed from the start; level 2
nodes are two squares removed
from the start, and so on. It is
fairly straightforward for us to
draw the tree, but implementing
this structure in BASIC is more
difficult

We can make the task of testing each route
easier by enforcing a structure on the maze data
that represents relationships between squares.
The data structure that most lends itself to this
application is a hierarchical tree. Beginning with
the start point as the 'roof of the tree, we can build
up a second generation of squares (or 'nodes')
that are one square removed from the root. A
third generation of nodes can be built from these
second generation nodes, and soon. We can draw
a tree for any maze by numbering each square and
following the rule that descendants from any node
are drawn from left to right in the order North,
East, South and West of the parent node in the
original maze.

This simple maze can be solved in five ways,
without retracing one's steps. Three possible
solutions are shown above, as routes through the
tree and as actual routes through the maze. It is
obvious to us that route 2 is the shortest route, but
this is because we are able to evaluate the tree
laterally; that is we can consider the maze as a
whole. The computer must solve the tree in a
linear way, taking each possible route
systematically until the finish node is found or a
blind alley is reached. In the first case a record of
the sucessful route must be kept; in the second the
path taken must be marked as a blind alley before
restarting from the root node. The program will
continue to travel through the tree until all
branches from the root node have been tried.

BASIC does not lend itself readily to search
algorithms of this type and the programming can

---4" X

2 3

Two-Way Drive
The maze solving program
interprets the maze in two ways.
As the maze is read in from data
statements it is stored in a two-
dimensional array, the start and

finish points also being held
initially as co-ordinates. In order
to solve the maze the program
must treat each square in the
maze as a 'node' in a tree.
Rather than using the initial co-
ordinate system, each square is
therefore numbered in order,
starling at the top left-hand
corner of the maze

0 1 2 3

5
4 S 6 7

8 9 10 11

14
12 13 F 15

LOST
IN MAZES
In previous instalments of Workshop we
developed the hardware and software to
drive a two-motored vehicle and control its
direction (see pages 585 and 612). Now we
develop an 'intelligent' program that will
steer our two-motor vehicle through a maze
by selecting the shortest route.

4111.91.4110/1. V/SUllr 70n11111111M111nMI

The first stage in constructing a maze is to decide
on the area that will constitute the maze. This
could be a table top or an area on the floor. The
area designated should then be divided into a
number of squares, the size of each square being
dependent on the size of the vehicle that will be
used to negotiate the maze. Each square should be
large enough to allow the vehicle to pivot through
360

0
 within a single square. The area can then be

marked out as a grid. Objects such as books, cups,
or short lengths of wood can then be placed in the
area to form the maze.

The program requires you to specify the
dimensions of the maze, and the locations of
squares in the maze that are occupied and those
that are free. The easiest method of doing this is to
use a binary code: 1 indicating that a square is
partially or fully occupied by an object, 0
indicating that the square is free. In order that the
maze data does not have to be entered each time
the program is run, this information must be
written as a series of DATA statements. The final
four items of data are the start and finish point co-
ordinates. We can imagine the origin of the co-
ordinate system as having its origin at the top left
corner, the top row being row 0 and the leftmost
column being column 0. This maze corresponds
to the following DATA statements:

° DATA 4,4:REM DIMENSIONS OF MAZE
DATA 1,0,0,0,0,0,1,0
DATA 0,0,1,0,0,0,0,0
DATA 1,1 REM COORDS OF START

2 DATA 2,3:REM COORDS OF FINISH

Finding a route through a maze does not present
3 many difficulties. We can design a program that

will trace a route from the start point, backing out
of blind alleys and retracing steps until the finish
point is eventually stumbled upon. The eventual
route found (without the detours into blind alleys)
may or may not be the shortest possible route. If
we want to find the best route between the start
and finish points then we must adopt a method
that tests all possible routes between the two
points. It is worth noting that our program
interprets 'best route' as the route that uses the
least number of squares.

ORKSHOP/MAPPING A MAZE

772 THE HOME COMPUTER ADVANCED COURSE


