
ArGRAMMING 41i1111104111111
LOOP LINES

Flowcharts are an important technique in
program design, but the commonplace
notation is not always sufficiently precise,
especially when dealing with loop
structures. We consider various ways of
classifying loops, and introduce a new
flowchart symbol — the iteration box.

Iteration, or looping, is one of the essential
structures of any programming language. Earlier
in the course, we said that a loop was used in an
algorithm whenever a decision switched the flow
of control onto a path that brought it back,
eventually, to the same initial decision. This
adequately describes the structure: the repeated
performance of a body of code. However, it
doesn't define it in all its many forms. Since loops
are such an essential primitive structure,
comprising probably 60 per cent of all processor
activity, it is extremely useful to look at them in
more detail. We will pay particular attention to
their effect on general program/algorithm
structure, and to the various ways in which they are
constructed and classified.

Loops are often divided into two classes,
depending on their similarity to the two high-level
language loop structures, REPEAT... UNTIL and
WHILE.. . EN DWHILE; both types are used in PASCAL,
and the REPEAT loop is implemented in BBC and
One BASIC. The two types differ in their
positioning of the loop exit test: in a REPEAT loop
the test comes at the end of the loop body, whereas
in a WHILE loop it comes at the start. This means
that the body of a REPEAT loop, once entered, will
always be executed at least once, whereas that of a
WHILE loop need not be. This first difference can
be seen quite clearly in the flowchart diagram.

Another way of classifying loops is according to
whether the variable that acts as the loop counter is
used in the loop exit test, or whether some other
test condition controls the loop exit. This is less
clearly seen in a flowchart of the conventional
linear kind. In. fact, the kind of 'commonsense'
flowchart that we have become familiar with
portrays loops in an unhelpful way. In these
flowcharts, a loop looks exactly the same as a
simple branch, and it is often necessary to examine
the algorithm in detail to distinguish between
them.

A clearer notation, called the 'iteration box',
exists, which clearly marks the start of a loop, and
eliminates the loop/branch confusion. It consists
of three linked boxes: the first box shows the
initialisation of the counter, the second shows the
incrementing of the counter, and the third contains

the loop exit test. REPEAT and WHILE loops can
both be shown in this form, but differ in the flow of
control through the boxes, while the test box
indicates whether the loop is counter-controlled or
not. These points can be clearly seen in the
diagram.

In a REPEAT loop the flow of control is 'initialise-
body-test-body-test', whereas a WHILE loop goes
'initialise-test-body-test-body'. This can be seen in
the way that the control lines leave and re-enter the
iteration box, with the body of the loop 'dangling'
from them.

Loop Classification

414 THE HOME COMPUTER ADVANCED COURSE

