

PART 10 MACHINE CODE 	

ASSEMBLY LANGUAGE

MOOR - base address
of AS()

Load index register
with zero

loop

Load accumulator from BADDR
modified by index register

Add $20 to accumulator

Store accumulator at BADDR
modified by index register

Index register -
index register 1

Is
index register 	_ND
. - SOA ?

BASIC
VERSION

FORK-0T09

CS = AS(K)

CS = CHRS(ASC(CS) + 32)

AS(K)=CS

NEXT K

Indexed
Addressing
Suppose that we have a
BASIC string array. AS,
whose 10 elements are sing;€
upper-case characters that we
wish to change to lower-case.
ID most machines they will be
stored as a table of 10
consecutive bytes in the
string storage space. We
might write a machine code
program to convert them that
would use indexed
addressing: the egnivalenE
BASIC program illustrates
this technique.

Here, the array name A$()
pointth the BASIC Interpreter
to the start address of the
array elements. while BADOR
does the same in Assembly
language: similarly, the loop
counter, K, points to each
element al AS in turn. iost
as the index register modifies
MOOR in Assembly
language

Yes

Stop
	

STOP

Given this, we can refer to every subsequent byte
in the table by its position relative to the base
address, so that the first byte is in position zero,
the second byte is in position one, the third in
position two, and so on. A byte's position relative
to the table base address is called its index, and
the absolute address of any byte in the table is
calculated from the sum of the base address and
the byte index. If we can construct a program
loop in Assembly Language, and use the loop
counter as an index to the base address of the
table, then we can address each byte of the table
in sequence, just as we might access the elements
of a BASK: array using a FOR..NEXT loop.

Once again, the Z80 and 6502 Assembly
languages handle indexed addressing differently.
The 6502 chip contains two single-byte registers
called X and Y, each of which can hold an index
that modifies a base address. This limits the length
of a table to 256 bytes (the largest possible single-
byte number). The Z80 chip contains two two-
byte registers, IX and IY, which may hold the
base address itself, and can then be incremented
or decremented to point to successive bytes of the
table. Since they are two-byte registers, IX and IY
can address any byte addressable by the CPU
itself. Their contents can also be modified by a
single-byte index.

INDIRECT ADDRESSING
Indirect addressing involves the use of pointer
addresses, a concept which was introduced early
in the course, in relation CO floating boundaries in

memory (see page 58). Imagine that a group of
people form a cinema club and that they meet
every week to watch a film chosen by the club
president. The film may be showing at any one of
a dozen different cinemas, so when he has chosen
the film for the week, the president writes details
of the time and place on a postcard which he then
sticks in the window of a shop in the centre of
town. Club members don't know where the film
will be from week to week, but they know where
the shop is, and the shop `points' them to the
correct cinema. The address of the shop is,
indirectly, the address of the cinema.

In indirect addressing mode it is possible to
Indicator Pointer
Examples of indirect addressing
do not often appear in everyday
fife. However, in this
photograph the train indicator
board contains the actual data
wanted by the traveller, so the
sign 'ceiling nirn where to find
the board indirectly addresses
that data. Incfirect addressing in
an Assembly language
instruction means that the
address supplied in the operana
contains the address of the byte
where the data is stored; me
operand address is a pointer

THE HOME COMPUTER ADVANCED COURSE 197

