BADDR = hase address «Sﬂpﬂﬂ@-ﬂiﬁwﬁh%&
AS() BASIC string array, AS,
T ‘Whose 10 elemenis are singe
Load index register ‘Upper-case characters fat we
~ with zero it e
3 1;; Mmﬂ&m}t‘:ﬁl will be.
storedasatableof 10
Begin 'FORK-=0T09 C consesutie ytesinte
loop ¥ siing storaga space. We.
= mrgntwﬁiaam&mm&t
: TS ety
Load accumufator from BADDR GS AS(K] ﬁfﬁd'u EB_Q;EI'“& t .
modified by index régister addressing; the equivalent
¥ T | .iﬁﬁiﬂgﬂgrﬁ:ﬁmm
Add $20 to accumulator 5= CHRS(ASC(CS) +32) his technigue.
: _a. : : = [— i — Hee, the amay panme AS()
Store accumulator at BADDR | AS(K)=CS f{fﬁ&iﬁiﬁ:ﬂﬁm
modified by index register f array elements, while BADDR
L @ﬁﬂﬁ?ﬁ'ﬁﬂ?“:iﬂfﬁmﬁﬁ .
Index register = Janausge; simifarly, he loop
indei mg?eter +1 counte, K, poiis 0 6ach
5 slement of AS() in tor, jus
=W s the Index fegister modifies
5 Sy BADDR in Assembly
&~ index register | NEXT K lenguags '
S =80A2 : =
Yes
STOP |

Given this, we can refer to every subsequent byte
m the table by its position relative to the base
address, so that the first byte is in position zero,
the second byte is in position one, the third in
posifion two, and so on. A byte's position relative
1o the table base address is called its index, and
the absolute address of any byte in the table is
caleulated from the sum of the base address and
the byte index. If we can construct a program
loop in Assembly language, and use the loop
counter as an index to the base address of the
table, then we can address each byte of the table
in sequence, just as we might access the elements
of & BAsiC array using a FOR..NEXT loop.

Once again, the Z80 and 6502 Assembly
languages handle indexed addressing differently,
The 6502 chip contains two single-byte registers
called X and Y, each of which can hold an index
that modifies a base address. Thislimits the length
of a table to 256 bytes (the largest possible single-
byte number). The Z8(chip contains two two-
byte registers, IX and TY, which may hold the
Dase address itself, and can then be incremented
of decremented to point to successive bytes of the
table. Since they are two-byte registers, [X and TY
can address any byte addressable by the CPU
itself. Their contents can also be modified by a
single-byte index,

INDIRECT ADDRESSING

Indirect addressing involves the use of pointer
addresses, a concept which was introduced early
in the course, in relation to floating boundaries in

memory (see page 58). Imagine that a group of
people form a cinema club and that they meet
every week to watch a film chosen by the club
president. The film may be showing at any one of
a dozen different cinemas, so when he has chosen
the film for the week, the president writes details
of the time and place on a postcard which he then

sticks in the window of a shop in the centre of

town. Club members don't know where the film
will be from week to week, but they know where
the shop is, and the shop ‘points’ them to the
correct cinema. The address of the shop i,
indirectly, the address of the cinema.

In indirect addressing mode it is possible t©

LIZ DG

TN MeKINMELL

Indicator Pointer

Exampies of indirect addressing
do not often appear In everyday
life. However, in this
photograph the train indicator
ooaErd containg the actual data
wanled by the travailer, so the
sign eiting Rim where o find
the board indirectly addresses
that data: Indirect addressing in
an Assembly language
instruction means that the
stidress suppiied in the operand
contains the address of the byte
where the datd s stored: the
Qpgrans address s 4 pointer

THE HOME COMPUTER ADVANCED COURSE 197

et

