
El
Basic Programming

establish early, each time the address book
program is used, and one that is likely to need
updating several times during the use of the
program. It is therefore going to be one of our
`global' variables, and establishing its value will
need to be part of an initialisation' routine. This
can be done every time the program is run, or a
`flag' can be created which indicates whether or
not the value of POSITION has changed since the
program was last run. The latter approach is not
difficult, but at this stage it creates an unnecessary
complication. We'll keep things simple and find
the value of POSITION as one of the early tasks
whenever the program is run.

Let's revise the activities we want the
computerised address book to do and see if we can
move towards an overall program strategy. This
time we'll be slightly more rigorous and assume
that each of the activities will be dealt with as a
separate subroutine (the name of which will be
indicated by being enclosed in asterisks).

1. Find record (from name) *FINDREC*
2. Find names (from incomplete *FINDNAMES*

name)
3. Find record (from town) `FINDNMTWN*
4. Find records (from initial) FINDINIT*
5. List records (all) LISTRECS*
6. Add record *ADDREC*
7. Change record *MODREC*
8. Delete record *DELREC*
9. Exit program (save) *EXPROG'

We now know, in broad terms, what the desired
`inputs' and `outputs' of the program are, so we can
already start thinking in terms of a main program.
All the detailing can be done through the process
of top-down programming and coded in the
various subroutines. We know that several things
will need to be initialised, including the value of
POSITION. We know that, as the program is to be
menu-driven, we will be presented with a set of
choices whenever the program is run. We also
know that, whatever our response to the choices
presented, we will want one of them at least to be
executed.

So the body of the main program can already
take shape:

MAIN PROGRAM
BEGIN

INITIALISE (procedure)
GREET (procedure)
CHOOSE (procedure)
EXECUTE (procedure)

END

In BASIC it would look like this (with line numbers
substituted for the subroutine names):

10 REM H.C.C. ADDRESS BOOK PROGRAM
20 GOSUB `INITIALISE*
30 GOSUB 'GREET'
40 GOSUB *CHOOSE*
50 GOSUB *EXECUTE*
60 END

The *GREET* subroutine or procedure would
display a greeting on the screen for a few seconds,
followed by the menu. The greeting could,
perhaps, look like this:

* WELCOME TO THE"
*HOME COMPUTER COURSE"

*COMPUTERISED ADDRESS BOOK*
(PRESS THE SPACE-BAR WHEN READY TO CONTINUE)

In response to the request to press the space bar,
the program will branch to the *CHOOSE*
subroutine and the user will be presented with a
screen like this:

'DO YOU WISH TO'
1, FIND A RECORD (from a name)
2. FIND NAMES (from part of a name)
3. FIND RECORDS (from a town)
4. FIND RECORDS (from an initial)
5. LIST ALL RECORDS
6.ADD A RECORD
7. CHANGE A RECORD
8. DELETEA RECORD
9. EXIT AND SAVE

*CHOOSE 1 10 9*
*FOLLOWED BY RETURN*

At this point, the program will branch to the
appropriate subroutine depending on the number
entered. The structure of the program is now
beginning to take shape. All options except
number 9 (to EXIT and SAVE) will need to end with
an instruction to return to the *CHOOSE*
subroutine. But there are many details of the
internal organisation of the data that we have not
considered. We will come to these later.

Let's assume that we are running the program,
that it already has all the records in it that we need,
and that we want to search for a full record by
inputting a name only. This calls for option 1 -
FIND A RECORD (*FINDREC*). Before we attempt to
design this part of the program, let's consider some
of the problems involved in computerised search
routines.

Searching
Textbooks on programming techniques tend to
deal with searching and sorting together. Readers
may recall that we have already touched on sorting
in a program designed to sort names into
alphabetical order (see page 134). Both sorting
and searching raise interesting points about how
data is organised — in a computer or any other
information system.

If a `manual' address book comprised a note-
book without a thumb index, and if entries were
added when new names and addresses were
thought of, without being sorted into alphabetical
order, we would have a data structure known as a
`pile'. A pile is a set of data collected in the order in
which it arrives. It is obvious that a pile is the least
effective way of organising data. Every time you
want to find someone's address and telephone
number you have to look through the whole
address book. The same is usually true of

THE HOME COMPUTER COURSE 273


