
MODE 1
This short program listing draws
a colourful spiral flower on the
screen using MODE 1 resolution.
Note the use of filed in triangles
to pnduce the flower petals.

10 REM FLOWER
20 CLS
30 MODE 1
40 FOR D=1 TO 3
50 A=630 : 8=500
60 MOVEA,B
70 FOR C=1 TO 550 STEP3
80 GCCLO,RND(3)
90 S-(C/(RND(5) +10)}
100 X=S*5`SIN(CP6)+A
110 Y=S*5*CDS(C/16)+8
120 PL0T85,X,Y
130 NEXT C
140 NEXT D
150 END

The spiral Fattern is produced by
the combination of sine and
cosine in lines 100 and 110.
Normally this relationship
between the x and y co- )rdinates
produces a circle but the
FOR. NEXT loop gradually
increases the radius C producing
the spiral effect. The co-
ordinates o the centre cf the
spiral, A and B, may be altered to
re-position the flower

And Light

very fast (a note has a short duration). In addition,
note lengths can be more flexibly defined by the
addition of dots such as Li. or L5. where each dot
increases the note length by half its normal value.
ThereforeL1...=1 + 2 +z +z=22 notes andL5._
s + jo, = ,'„ note.

There is no absolute way in . which the
relationship between note and tempo can be
represented. The values required can vary for each
tune and are best selected by trial and error. This
may be a little time consuming but it makes the
command very flexible.

The parameter 0 specifies the octave in which
the next note is to be played. 01 starts with C at
131Hz and 05 ends with B at 2093Hz. Middle C
begins 02 which is the default octave. Within an
octave, notes can be specified in two ways. In the
first case a number can be used that corresponds to
a musical note as follows:

1 2 3 4 5 6
C C# D D# E F
7 8 9 10 11 12

F# G G# A A# B

This makes it possible to specify a note as a variable
within a selected octave, Alternatively, the
required note letter can be used directly to make
the statement easier to understand in a listing.

The above explanations are best illustrated with
an example. The following command plays F (6)
in the default octave 02, for half a note length (L2)
at default volume V15. It then pauses for a quarter

note length (L1) at volume V20. Tempo is set at T3:

PLAY "T3;L2;6;P4;03;V20;L1;A#"
F > < A# >

pause

In addition, the T, 0, V, and L parameters can be
varied by preset amounts from within the
command by the addition of a suffix:

Suffix Effect
+ Adds one to current value
- Subtracts one from current value
> Multiplies current value by two
< Divides current value by two

The format is: T+, T-, T > or T< for each
parameter.

The most useful Dragon facility is the ability to
PLAY tunes using substrings. These are first
defined, and then PLAYed in any order or repeated:

10 A$='F;A#;G"
20 BS="C;D#: F;P4;XA$;"
30 PLAY BS

This defines AS and then includes it in B$ as
substring XAS. The resulting tune is C—D#— F-
P4—F—A#—G. This technique can be continued as
necessary where sequences of notes are repeated a
number of times within a piece of music, In all
cases the semi-colon following a substring must be
included, as in XAS, above.

Higher numbers repeat these eight functions but
with extra effects, such as dotted lines instead of
solid lines. Values of k between 80 and 87 fulfil a
particularly useful function. PLOT80,x,y joins the
point (x,y) to the two previously plotted points to
form a triangle. The triangle is then filled in with
the current foreground colour. This provides the
only simple means of PAINTing graphic shapes.

VDU x is equivalent to the more usual BASIC

command PRINT CHRS(x). We saw in the
introduction to graphics on the BBC Micro that
VDU can be followed by a series of numbers. VDU
v,w,x,y,z is equivalent to:

PRINT CHR$(v);CHRS(w);CHRS(x);CHRS(y);
CHRS(z)

The VDU commands allow the user access to the
part of the BBC's operating system that controls
graphics and screen display. Although VDU
commands may be used within BASIC programs
they actually work independently of the language
employed. Thus the same VDU commands could
be used for a graphics display in PASCAL or any
other language offered for the BBC. Each of the
BASIC graphics facilities so far discussed can also be
implemented by the appropriate VDU command.

Defining characters is very easy on the BBC

Micro. VDU 23 controls this function. In the section
on user-defined graphics (see page 247) we
learned that normal ASCII codes are constructed
from a block of eight by eight pixels. The pixels that
are visible can be represented by a 1 in binary and
those not visible by a 0. Each row of eight bits can
then be converted to its decimal equivalent, giving
a total of eight decimal numbers to define a
character. VDU 23 allows the user to redefine the
character with an ASCII code between 224 and
255. For example:

10 REM DEFINE A CHARACTER
20 MODE 2
30 VDU 23,240,16,56,124,146,16,16,16,0
40 PRINT CHR$(240)
50 END

This short piece of program redefines the character
with ASCII code 240 to create an arrow shape.
The last eight numbers define this new shape, and
line 40 PRINTs the character on the screen.

VDU 24 and VDU 28 respectively control the
creation of graphics and text `windows' on the
screen. Using these functions, graphics and text
output to the screen can be limited to definable
areas. This can be particularly useful when
designing interactive programs where a split screen
is desirable. All that is required to define a graphics
window is to specify the co-ordinates of the bottom
left- and top right-hand corners.

THE HOME COMPUTER COURSE 375


