
Screen Addressing
For memory-mapping purposes
the Spectrum's 24-line screen
is divided into three sections of
eight screen lines: the details of
the addressing of the middle
section are shown here. Each
li ne of the screen is divided into
eight hi-res rows of 32 bytes,
each bit of which corresponds
to one dot pixel. Bytes are
numbered sequentially along a
hi-res row, and from each row
in a screen line to the
corresponding row in the
screen line below: thus, the
bytes in the eight top rows of
the eight lines of one screen
section have consecutive
addresses. The next address is
that of the first byte in the
second row of the first screen
li ne; all the bytes in the eight
second hi-res rows in this
screen section are addressed
sequentially from this address,
and so on. The address of the
first byte in the top row of the
first screen line of one section
is one plus the address of the
last byte in the eighth row of
the eighth line of the preceding
section. The following program
for the 48K Spectrum illustrates
this by POKEing a line into each
byte of the hi-res screen in
turn:

50 LET SCRNSTART=16384
60 LET SCRNEND=22527
100 FOR B=SCRNSTART TO

SCRNEND
200 POKE B.255
300 NEXT B

UPPER SECTION

MIDDLE SECTION

-fp MACHINE CODE

,
,st byte in middle section

S48° C --i-, =1=1=3=1:22==r
54900 —4-

the subroutine UNDER. With D set to 0, UNDER
copies the. previously saved screen contents back
to the screen from the table, wiping out the sprite
on the screen. The program then reads the sprite
position and key value, tests the key value, calls the
routine to prepare for movement in the
appropriate direction and then jumps to SAVSCR to
save the screen contents and print the sprite on the
screen, just as before.

To understand the two routines ABOVE and
BELOW that prepare for the sprite's up and down
movement, we must first look at the odd way in
which the Spectrum matches memory addresses to
screen locations. This is explained in chapter 24 of
the Spectrum manual. If you look at the addresses
in hexadecimal you will see that for the 256
characters in each section of the screen the low
byte of the address of each of the eight bytes that
make up each character is the same as the
character number within the block, while the high
byte of the address increases by one when we
move one line of pixels down the screen. For this
reason, the eight rows of pixels for one character
have addresses in the range $4000 to $47FF in the
top third of the screen, from $4800 to $4FFF in the
middle third of the screen, and from $5000 to
$57FF in the bottom third of the screen. (The `S'
sign means that numbers arc in hexadecimal
notation — some assemblers require the use of a
hash (#) symbol instead.)

The subroutine BELOW expects a screen address
in the HL register pair, calculates the address of the
byte that is immediately below this position on the
screen, and leaves this new value in H L. If you look
at the screen addresses in binary you will see that
when the three low bits of H are 111 the next row of
pixels down is in a different character block.
BELOW tests for this first; if we are still in the same
character block all that needs to be done is to add 1

Last byte in upper section S4487 IF FFs

MIDDLE EIGHT
SCREEN UNES

to H. If we are in a different character block we
have to add $20 (since there are 32 characters on a
line) to L. If the new value of L is between 0 and
$1F (the three high bits 000) this means we are in a
different screen section. The value of HL is the
current screen address.

If we are still in the same screen block we have to
subtract 7 from H. You will find this becomes
easier to understand if you work through the code
and see what it does to the addresses shown in the
table. ABOVE is similar to BELOW, but calculates the
address of the pixel above the screen position.

The subroutines LMOVE and RMOVE shift the
pixel bit pattern in the table left and right. Again,
they are very similar, so we will just look at how
LM OVE works. The accumulator is loaded with the
bit position pointer, which is a single-byte number
in the range 0 to 7, corresponding to the
numbering of bits in a byte. 1 is then subtracted
from the accumulator value to effect the move;
this will also result in a number in the range 0 to 7
unless the original value of the bit position pointer
was 0, in which case the accumulator will hold
255. Use of the AND 7 instruction will now ensure
that the value in the accumulator remains in the 0
to 7 range. We then have a loop for the eight rows
of pixels in the sprite. For each row, we load the
two bytes of the table containing that row of pixels
into the DE register pair and perform a 16-bit rotate
left on DE. If this does not move a bit of the sprite
off the top end of D into the bottom end of Ewe can
simply store the shifted sprite pattern back into the
table and go on to the next row of pixels. If we have
moved a bit of the sprite from the top of D to the
bottom of E we need to exchange D and E before
storing them back in the table. At the end of the
routine we must also subtract 1 from HL so that the
sprite will be printed one position to the left.

The final subroutine in the program is PRSPRT,
which does the actual printing of the sprite on the
screen. This consists of two nested loops, one for
the eight rows of pixels in the sprite, controlled by
the C register, and one for the two bytes the row of
pixels is split between, controlled by the B register.
The important part of the routine is the central
section that stores the bits of the sprite pattern on
the screen without disturbing those bits already on
the screen that should not be covered by the sprite.
We have the screen address in the HL register pair
and the sprite table address in the IX register.
PRSPRT takes a byte of the pixel pattern of the
sprite, and 0 Rs it with what is already on the screen
SO that we end up with the black dots from the
sprite pixel pattern superimposed on the previous
screen contents.

This program is not comprehensive — in
particular the maximum size of a sprite is limited to
eight by eight pixels, only one sprite is allowed,
and the sprite does not carry its own colours
around with it. However, if you understand how
this program works you will be able to extend it to
include extra features. Even without modification,
it is a very useful addition to many BASIC and
machine code programs.

,iwe wweeiii we SOFF

First byte in lower sectio n 	Last byte in middle section .. S4FFF
$5000 — n

z
(2,z
. , 4 32 BYTES _fp

358 THE HOME COMPUTER ADVANCED COURSE

