
Basic Programming M

Luckily, SIZE is always one bigger in value than the
highest valid record. In other words, there is no
record at position SIZE in the arrays, so this fix will
not modify any existing record. But without some
extensive REMs explaining what's going on, think
how confusing these three lines would be to
someone who had not been involved in the
development of the program!

Back to the more interesting problem of dealing
with `near misses'. Suppose we had entered
someone's name as Pete Jones during an *ADDREG*
operation, but as Peter Jones during 'FNDREC*.
These would be converted to the standardised
forms JONES PETE and JONES PETER respectively,
and no match would be found during the search,
even though the record we wanted was there. We
will not attempt to solve this problem, because a
satisfactory solution would represent a major
programming task. For readers interested in
experimenting, however, here are some pointers:

BEGIN {search array for exact match}
IF exact match found

THEN PRINT full record
ELSE search array for close-match

IF close-match found
THEN PRINT record for close-match
ELSE PRINT "NO RECORD FOUND"

ENDIF
ENDiF

END

The procedure for close-match could be something
along the lines of:

BEGIN {close-match}
Search array for exact surname match
IF exact surname match

THEN search forenames for max-match
PRINT record fo r max-match
ELSE search surnames for max-match

IF surname max-match found
THEN PRINT record for max-match

ENDIF
ENDIF

END

The procedure for max-match could be roughly
defined as finding the target string with the
maximum number of characters in common with
those in the key string. Or it could accept a
situation in which the key string was wholly
contained within the target string, or vice versa.
There are no simple solutions, but plenty of scope
for enterprising programming.

There is one `side effect' of the program
fragment presented. Suppose the following
sequence of events takes place. There are ten
records in the data file. You run the program and
then use 'ADDREC* to add a new record, followed
by *FNDREC* to locate a record. When * EXPROG * is
finally run, to save the file and terminate the
program, the record you added will not be saved
(although all the other records will be). This is a
direct result of something that happened in the
execution of *FNDREC*. Can you see why the

record added will not be saved?
In the next instalment of the course we will

explain how to prevent this loss of data; show what
the CURR variable is used for, and describe how to
delete or modify a record. Other options on the
main menu (*FNDTWN* etc.) are closely similar to
routines we have already worked out. Readers will
be left to implement them for themselves if they
are required.

Finally, consider what would happen if there
were exactly 50 records in the data the and the
modified * FN DR EC* routine (that calls *MOD NAM *)
were used. (Hint: SIZE will have the value 51.)

Basic Flavours
r ^- For Sinclair machines, the following

modifications are requirec:

13000 REM 'FNDREC TEST VERSION
13010 IF RMOO -1 THEN GOSUB 11230
13020 PRINT "INPLT KEY"
13030 IVPUTSS
13100 LET BTM -1
13110 LET TOP - SIZE -1
13120FORL-1T01
13130 LET MID - INT((BTM+TOP)12)
13140 IF MS(MID) < > SS THEN LET L-0
13150 IF MS(MID) < SS THEN LET BTM -

MID+1
13160 IF M$(MID) > S$ THEN LET TOP - MID

-1

13170 IF BTM > TOP THEN LET L -1
13180 NEXT L

13200 IF BTM> TOP THEN PRINT "RECORD
NOT FOUND'

13210 IF BTM <- TOP THEN PRINT 'RECORD
IS NO ";MID

13240 STOP
13250 RETURN

Notice cnce again the problem of single-letter
string variablE names: here SS and MS have
been substituted for SCHKEYS. MODFLOS

TESTING13000 REM VERSION OF *FNDREC* FOR
13010 IF RMOD = 1 THEN GOSUB 11200
13020 INPUT "INPUT KEY ";SCHKEY$
13030 REM
13043 REM
13050 REM

13060 REM
13070 REM
13080 REM
13090 REM
13100 LET BTM = 1
13110 LET TOP = SIZE - 1
13120 FOR L = 1 TO 1
13130 LET MID = INT((BTM + TO?)/2)
13140 IF MODFLD$(MID) <> SCHKEY$ THEN
13150 IFF MODFLD$(MID) < SCHKEY$ THEN
13160 IF MODFLD$(MID) > SCHKE'l$ THEN
13170 IF BTM > TOP THEN L = 1
13180 NEXT L
13190 REM

13200 IF BTM > TCP THEN PRINT "RECORD NOT FOUND"
13210 IF BTM <= TOP THEN PRINT "RECORD IS NO ";MID
13220 REM
13230 REM
13240 STOP
13250 RETURN

Erratum

In the ZX81 and Spectrum
Basic Flavours on page 257,
li nes 9990 to 9992 should not
have been included in Step 3

L = 0

BTM = MID +
TOP = MID -

0

M

THE HOME COMPUTER COURSE 419


