
DEC IMAI. BINARY CHARACTER

31 0 0 1 0 (000 -(spoce)
3) 00100001 -
35 00I00010
35 0 0 1 0 0 0 1 1-
35 0 0 1 0 0 1 00
37 0010 0101 •

33 0010 01 10 -
39 001001 I I -
43 0010 1000 •
4 1 00101001
42 0010 101 C
43 00101011 - -
44 0 010 1 10C
45 00101101 = -
46 00101 1 IC
47 0 0 1 0 1 1 1 1
48 0011 0000 = 1'

49 0 0 1 1 0 0 0 I
50 001 1 001C =
51 001 10011
52 0 0 1 1 0 1 Oc -
53 0 0 1 1 0 1 0 1 -
54 001 1011C' -
55 0 C 1 I 0 1 I i 7
56 0 0 1 1: 000 = 5
57 0 C 1 1 : 001 = '?
58 0 G 1 1 . 0 1 0 =
59 0 0 1 1 -. 0 1 1 =
60 0 c 11 : 1 06 =
61 061I 1101 -
62 0 0 1 1 . 1 1 C'
63 0011 1111 •
64 01000000 •
65 0 1 000001 -
66 0 1 0 0 0 0 1 0 • 3
67 0 100 0011 - c
68 0 1 00 0 1 00 - 3
69 0 1000 1 01 =
70 0 1 00 0 1 1 0 =
71 0 1 0 0 0 1 1 1 •
72 0 100: 000 -I
73 0 1001 001 • 1
74 0 1 001 010 •
75 0:001011 =
76 0 1 00 I 1 00
77 0:001101= A
78 0 1 00 1 1 10 = 4
79 0:00 1 1 11 = 1
80 01010000 = I'

P.

 0 : 01 0 n0I =)
82 0 1 0 1 0 0 1 0 = R
E3 0 1 0 1 0 0 II =
E4 0:01 0 (00 = r
65 0:01 0 1 01 = 1'
F.6 0: 0 1 0 1 1 0 • 1'
67 0.01 0111 - K
AR O' 0 I 1 0 0 0 • H

89 0 101 100! Y
,o 0: 0 1 1 0 1 0=
91 0101101: =
92 0 1 0 1 1 1 0 0 =
9') 0 1 0 1 1 HI. =

94 0 I 0 I I I I n =
95 0 I 1) 1 I I I.

-94 (I 1100000 =
97 6 1 1 0] 0 0 1 • .^
98 0 1 1 0 0 0 1 0. n
99 01 10301 1 •

100 0 1 1 0 3 1 0 0 •
101 0 I 10 3 I 0 I •
102 01 1 0 3 1 1 0 •
10301100111=
1 01. 01 10I 000 =
Ins 0 1 1 0 1 (1(1 1 =
106 01101010=
107 0 1 1 01 0 1 1 -
108 011011o 11

109 0 1 10 1 I (I I=
110 01101IIn=
III 01 1 0 1 I 1 I =
Ile 01 I 1 00011 • 1I
.13 01 1 111001 •
114 (I1 i (00 1 11 .
1 1 5 0 1 1 1 0 0 1 1
116 01110100 • 1
117 0 1 1 I n t n 1 • 1.
119 01 I (DI I I)
119 01 1 r 0 I I I =
1211 n I I I I o U u -
121 n 1 1 I 1 n o 1 -
122 II I III III n =
23 II I I I I Il l I •

124 0 I 1 I 11 11 0• I
125 0 1 1 1 1 10 1 =
I26 C 1 I I I I I '1 -

ASC II
Here is a complete list of the
ASCII values tetween 32 and

126, their bina ry egl.ivalerts,
and the :haracters they
represent. The mearing
attached to values oltsidethis
range varies considerably from

machine to machine

c Programming

25C PRINT "PRESS SPACE-BAR WHEN READY"
26C IF INKEY$ < > " "THEN GOTO 260
270 GOSUB *START*

The DO. .. WHILE Control Structure
The loop is repeated as long as the conditions True. The

statements may never be executed (if the initial condition is

False)

Line 260 says IF INKEYS is not equal to (< >) a
space (" ")THEN go back and check the keyboard
again. A slightly more elegant way of writing it
would be

250 PRINT "PRESS SPACE-BAR WHEN READY"
260FORX=0TO1 STEP 0
270 I F I NKEYS " THEN LET X = 2
280 NEXT X
290 GOSUB *START*

In this program fragment the loop (to scan the
keyboard) is executed only if the space-bar has not
been pressed. If the space-bar has been pressed
(i.e. IN KEYS =" ") then the program exits from the
FOR.. NEXT loop to line 290, which is the call to
the START subroutine. (NB. We are using `labels'
or names for subroutines. Many versions of BASIC

cannot call subroutines by name and you will have
to use line numbers instead of labels.)

We haven't encountered STEP before, and this
is perhaps an unusual application for it. When
using a FOR. . . NEXT loop, STEP allows the `index' to
he incremented in units other than one. FOR I =1 TO
10 STEP 2 will cause Ito have the value 1 on the first
pass of the loop, followed by 3,5,7 and 9. The next
increment (to 11) will exceed the limit of l0 so the
loop will be finished. It is even possible to have the
index counting backwards. For I = 10 TO 1 STEP-1
will cause Ito count from 10 down to 1. Using STEP
0 is really a clever trick that ensures that the loop

The REPEAT ... UNTIL Control Structure
The loop is repeated until the conditior becomes True. The

statements wil always be executed at least once

will never finish unless Xis `artificially increased' -
as in the case of our IF ... THEN statement.

Another useful control structure, again not
directly available in BASic but easily simulated, is
REPEAT . , . UNTIL. Here the condition test comes
after the main body of the loop, so the statement
or statements in the main body will always be
repeated at least once. Look at this `random
number generator':

10 PRINT "HIT THE SPACE-BAR"

20FORX=0TO1 STEP 0
30LETR=R+1
40IFR>9THENLETR=1
50 IFINKEYS= ` "THEN LETX=2
60 NEXT X
70 PRINT "THE VALUE OF R IS ";R

Here, the main body (incrementing the value of R)
is always executed at least once since the test to
branch out of the loop (IF INKEYS =" ") does not
come until after the increment statement (LET R = R
+ 1).

Yet another non-essential but useful control
structure is that usually called CASE. In BASIC, the
CASE structure is implemented using either ON .. .
GOTO or ON... G0SUB.Thisishowitworks.ON...
GOTO is a multiple-branching statement that
incorporates several IF ... THEN conditional tests
into a single statement. Consider a program
fragment that converts the numbers 1 to 7 into the
words for the seven days of the week:

1050 IF D =1 THEN GOTO 2020
1060 IF D = 2 THEN GOTO 2040
1070 IF D = 3 THEN GOTO 2060
1080 IF D = 4 THEN GOTH 2080
1090 IF D = 5 THEN GOTO 3000
2000 IF D = 6 THEN GOTO 3020
2010 IF D = 7 THEN GOTO 3040
2020 PRINT °MONDAY'
2030 GOTO*END*
2040 PRINT "TUESDAY"
2050 GOTO*END*

2060 PRINT "WEDNESDAY"
2070 GOTO`END"
2080 PRINT "THURSDAY
2090 GOTO*END*
3000 PRINT "FRIDAY"
3010 30T0*END*
3020 PRINT 'SATURDAY"
3030 30T0*END*

3040 PRINT "SUNDAY"
3050 a0TO*END'

A more compact way of achieving the same object
in BASIC is to use ON ... GOTO like this:

1050 ON D GOTO 2020,2040,2060.2080,
3000,3020.3040

ON. . . GOSUB works the same way, except that the
value of the variable determines which subroutine
is branched to. Here is a slight modification of the
dice program (see page 174) using ON. . . GOSUB to
select the appropriate graphics for the (lice
selected by the RND function:

THE HOME COMPUTER COURSE 213

