
ADVENTURE GAME/PROGRAMMING PROJECTS

the rest of the sentence. This task can be easily
achieved by scanning through the sentence one
character at a time, using MIDS, until a space is
found. The part of the sentence that lies to the left
of the space is the verb, and can be assigned to the
variable VB$. The part of the sentence to the right
can be assigned to a second variable, NN$. This
subroutine is used in Haunted Forest to split the
instruction assigned to the variable ISS:
2500 REM 9*9* SPLIT COMMAND 5/2 *9*8
2510 IF IS9L.IST OR ISS.EFU THEN VB$ISSIFIIRETURN

2515 IF 15$L00K THEN VBSISSIFIIRETURN

5520 F.0
2550 LSLEN(ISS)

2540 FOR C-I TO LS

2550 A*MIO*(IS*.C. 1)

2560 IF AS<) 	THEN 2590

2570 VBS.LEFT$(ISS.C - I) 1 F1

2580 19J$.RIGHTS(1S$.LS-C)CLS

2590 NEXT C

2600
2610 IF F1 THEN RETURN

2620 PRINTPRINT"I PESO AT LEAST TWO FflROS

2630 RETURN

Before the routine attempts to split up the
sentence, it first checks to make sure that the
command is not one of the three possible single-
word instructions - that is, LIST, LOOK or END. If it
is a single-word command, then the complete
instruction is assigned to VB$, and the routine is
exited. If the command is not one of these, then the
routine enters a FOR... NEXT loop and begins to
scan for the first space. Two techniques used
within this loop need special mention. Both relate
to the fact that it is extremely bad programming
style to perform a conditional jump out of a
FOR... NEXT loop without passing through the
NEXT statement. Instead, to signal the fact that
some condition has been met - in this particular
case, that a space has been found - a flag, F, is set
to one. Secondly, when the first space has been
found, it is a waste of time to continue scanning
through the rest of the sentence.

The loop can be neatly terminated at this point
by setting the loop counter, C, to its upper limit, LC.
Consequently, when the program again reaches
NEXT, it will pass on to the following instruction,
rather than loop back to the FOR statement. Once
the loop has been correctly terminated, then the
status of the flag, F, can be tested. A flag value of
one indicates that the sentence consists of more
than one word, and all that remains to do at this
stage is to return to the main loop. If the flag is not
one, then the command has only one word
and is not one of the single-word commands tested
for earlier. In this case, a message stating that two
words are required is printed before returning for
another command.

NORMAL COMMANDS
For the main part of the program, the player will
simply move from location to location and pick up
or drop objects that may be found. Therefore, for
the majority of locations, the commands GO, TAKE,
DROP, LIST, LOOK, END - and their variants - are
sufficient to allow the player to do this. Only in
unusual circumstances will the player wish to use
other more specialised commands. For example,
there is little point in using the command KILL if

there is nothing present to kill. We can, however,
devise a program structure where, on the majority
of occasions, only the six commands associated
with movement and objects are tested for. When
the player enters a new location, the program can
test to see if it is one that has been designated
'special' in some way. If this is the case, then any
new command requirements can be dealt with by a
specific command subroutine for that particular
location. Therefore, the main calling loop to our
program should do the following:

1) Describe the location and list the exits.
2) Determine whether the location is 'special'.
3) Ask for a command and, if the location is not
special, scan the list of normal commands.

There must also be a facility in the main loop to
distinguish between a command that causes a
move to a new location and one that does not. In
the first case, the loop needs to go back to the
beginning of the loop to describe the new location
and decide whether or not it is special. In the
second case, it is necessary only to loop back to ask
for a new command. The simplest way to
implement this is to use a 'move flag', MF, which is
normally set to zero. If a command involves
movement then this flag is set to one. The status of
MF can be tested at the end of the main loop and
the appropriate jump made. Add the following
lines to Haunted Forest:
270 GOSUB2500REM SPLIT INSTRUCTION

275 IF F=0 THEN 260:REM INVALID INSTRUCTION.

280 60S UL, 3000'REM NORMAL COF't'tNCS

290 IF VF8 THEP'PRINTPRINT"I DONT UNDERSTAND"

306' IF FF1 THEN 240REM NEW LOCATION

310 IF PF"0 THEN 26 :REM NEW INSTRUCTION

3000 REM *8*8 M3RltL COI'tWCS Sf2 9*8*

3010 VFO'REM VERB FLAG
3020 IF VB*-"GO" OR V0$IVE THENVFI'OOSUB3500

3030 IF VB$-TAKE OR VB$-"FICIc"THEN VF-IIOOSUB3700

3040 IF VB*OROP" OR VB*PUT"ThEN VFI980SUB3900

3050 IF VB*LIST" OR VB$"IPNENTORYTHEN VF.IIGOS

U84100
3055 IF VB*"LOOK THEN VF-lII"FlRETURN

3060 IF V8$."EPU" OR VB*"FINISH" THEN VF-IZGOSUB4

170

3079 RETURN

In the first routine, another flag, VF, is used to
indicate whether or not the verb has been
understood and obeyed. Only when the verb has
been isolated is VF set to one. We can insert a
failsafe 'I don't understand' statement in the main
loop by testing the status of VF. If VF remains zero
then the verb in the command has not been
recognised by the analysis routine, and the
statement is displayed.

In the next instalment of the project, we will
deal with subroutines for picking up, dropping and
listing objects. For now, we can add a short END
command subroutine to our group of normal
commands:
4170 REM **** END SAFE S,R 9*9*

4180 PRINTPRINT"ARE YOU SURE (V/N) ?
4190 SET ASIIF A$<)Y AND AS(>"N" THEN 4190

4208 IF A*- -N - THEN RETURN

4210 ENS

The LOOK command is also straightforward. To
redescribe the current position, we simply need to
set the 'move flag', MF, to one and return to the
main program loop. Setting M will cause the main

THE HOME COMPUTER ADVANCED COURSE 827

