
• MPUTER SCIENCE/LOGO

The WGO language uses the mathematical
technique of recursion (an instruction that
refers to itself) to great effect. Coupled with
variable inputs, the use of recursion in
procedures can produce some extremely
interesting results.

One of the first programs we defined in the course
was a procedure to draw a square. The definition
instructed the turtle to move forward a certain
distance, turn right 90 degrees and repeat those
two steps three more times. Here is another way to
draw a square:

TO SQUARE
FD 50
RT 90
SQUARE

END

If you were to try this out, the turtle would draw a
square and then carry on moving around the
perimeter of the square until you pressed Control-
G or BREAK. The most noticeable thing about this
new SQUARE procedure is that it calls itself — in
other words, it is 'recursive'.

When this procedure is run, LOGO fetches the
definition of SQUARE and begins to obey the
instructions. The turtle is moved FORWARD 50 and
then turned RIGHT 90. The next instruction is
SQUARE, so LOGO fetches the definition of SQUARE
and begins to obey it. This will go on ad
infinitum if the program is not interrupted.

It is also possible to use recursive calls in
procedures that require inputs:

TO POLY :SIDE :ANGLE
FD :SIDE
RT :ANGLE
POLY :SIDE :ANGLE

END

This procedure can produce all the polygons we
have defined so far in the course (see page 545) as
well as many we haven't looked at (you might like
to try using the procedure with an angle value of
89). It is also possible to change the value of the
,input in the recursive call. Thus:

TO POLYSPI :SIDE :ANGLE
FD :SIDE
RT :ANGLE
POLYSPI (:SIDE + 5) :ANGLE

END

The only difference between this procedure and

604 THE HOME COMPUTER ADVANCED COURSE

REPEAT
PERFORMANCE

POLY is that five is added to the value of SIDE each
time it is called. So if you began with POLYSPI 1090,
then the first call would draw a line of length 10,
the second would be 15, then 20, and so on. The
result is a spiral. You might like to experiment with
different inputs: 1090, 10 95, 10 120, 10117, 10 144 and
10 142 are interesting starters. You could also try
modifying the procedure — one possibility is to
change addition to subtraction or multiplication.

Here's a similar procedure that increments the
angle rather than the side value:

TO INSPI :SIDE :ANGLE :INC
FD :SIDE
RT :ANGLE
INSPI :SIDE (:ANGLE + :INC) :INC

END

Try various inputs: 507, 10 40 30, 15 2 20, 5 30 20 will
do initially. Why do some shapes close and others
not? Can you find a rule?

The simple repetition of a piece of code is
referred to as iteration. Loco uses REPEAT for this
purpose, while other languages use a variety of
constructs, such as FOR ... NEXT, REPEAT . . . UNTIL,
and WHILE... WEND. However, Loco relies much
more on recursion than it does on iteration. If
you've programmed in other languages you may
have difficulty in breaking away from using
iteration, but turtle graphics is ideal for
experimenting with recursive calls.

STOP RULES
All of the recursive procedures we have looked at
so far continue repeating indefinitely. Clearly, we
need a way to make a procedure stop at some
point. Taking the SQUARE procedure as our
example, a possible place to stop it would be after
it has drawn a complete square and the turtle's
heading is back to O. This can be done by adding a
'stop rule' to the procedure:

TO SQUARE :SIDE
FD :SIDE
RI 90
IF HEADING = 0 THEN STOP
SQUARE :SIDE

END

The new primitives are STOP and IF. The first of
these commands causes a procedure to stop
running and returns control to the calling
procedure. An IF statement is LOGO'S way of
making decisions. IF is followed by a condition,
and THEN by an action that is carried out if the
condition is true.

