
19
XGRAPH

uI
1111111111

1111111111111
:M1=11111111

HM0111111111111
=111111111

r-,n•11
•asiimmummemonnion

XCHAR

0'

31

01,27

BBC GRAPHICS/PROGRAMMING PROJECTS

AIL

detector character is to be moved.
30000EF PROCtest_kerboard
3010 REMUP ?
3020IF INKEY(-58)

n
-1 THEN PROCmoye(0.-1)

3030REM .. DOWN ? •
3040IF INKEY<-42>l THEN PROCmove(0,1)
3050REM •• RIGHT ? .•
30601F INKEY(-122)

.
-1 THEN PROCanoue(1,0)

3070REM .. LEFT ? it*
3080IF INKEY(-26)

.
-1 THEN PROCmove(-1,0)

3090ENDPROC

THE PROCEDURE 'MOVE'
This procedure is central to the program. Within it
the detector and assistant characters are moved,
and collisions with mines are tested for. Let us first
look at the section of the procedure that controls
the movement of the characters.

Two parameters are passed into 'move' from the
procedure 'test-keyboard'. These are accepted into
the variables delta-x and delta-y for use within
'move', and correspond to the change to be made
to the x and y co-ordinates of the mine detector.
For example, if the cursor-up key were pressed
then the values 0 and -1 would be passed to
'move'. The instructions: xdet = xdet+delta-x and
ydet = ydet+delta-y cause the co-ordinates of the
detector to be updated. In the case of cursor-up, 0
is added to xd et and -1 is added to yd et, effectively
subtracting one from its value. This seems to imply
a move of one unit down the screen, but we must
remember that the origin for character positions is
the top left corner and y values increase down the
screen. Thus, reducing yd et by one causes an
upward movement of one character cell. You may
wish to verify that the values passed for the other
three directions do in fact correspond to the
correct alterations of xdet and ydet. It would be
quite feasible to use this system to include
diagonal moVements. Passing the values (1,-1) to
'move' would cause the detector to move
diagonally one cell up and one cell right. However,
other keys would have to be introduced at this
stage to allow diagonal control from the keyboard.

Here is the listing for the 'move' procedure:
3220 OEF PROCmovo,delta_x,delta_y>
3230REM •• RUB OUT OLD POSITIONS •.
324000LOUR I
3250PRINTTAB<xdet,rdet>;"
3260PRINTTAB<xmen,yman>;"
3270REM • MOVE DETECTOR
3280x0ot.xdet.delta_x
3290rdet.rdetedelt._r
3300REM • TEST FOR LIMITS ...
3310IF xdet>17 THEN xdet.17
3320IF rdet>25 THEN rdet.25
3330IF xdet<2 THEN xdet.2
3340IF rdet<1 THEN rdet.1
3350REM H. CALCULATE MAN'S COOROS
3360xman.19-xdet
3370rman.26-rdet
3380PR00conver0(xmanoman>
3390IF POINT(x9rph,rgraph)2 THEN PROCexplode(xgraph,rgraph)
3400PROCconvert(xdot,rdet)
3410I0' POINT(xgraph,rgraph>

.
2 THEN PROCfound_m;ne

3420PR0000sition_chars
3430ENDPROC

Before the x and y co-ordinates of the detector are
altered we must first erase the old positions of the
detector and the assistant. Lines 3250 and 3260
use the old values of xd et, yd et, xman, and yman to
PRINT spaces over the old characters. As the new
characters will be PR I NTed in red (logical colour 1)
the colour command is used in line 3240 to set the
current foreground colour to 1. Lines 3280 and
3290 update the co-ordinates of the detector as
described previously. Before actually PR I NTing the
detector in its new position, tests must be made to
ensure that we are not incrementing or

decrementing co-ordinates outside the area we
have defined as our minefield. The upper and
lower limits of xd et and yd et are tested in lines 3310
to 3340. Here it has been decided that if the
detector reaches a boundary then it will stay there
until moved in the opposite direction. For
example, line 3310 tests to see if the right-hand
edge of the minefield has been reached, denoted
by an x co-ordinate of 17. If an attempt is made to
increase xdet past 17, then this line simply resets the
value to 17. It would have been equally possible to
create a 'wrap-around' effect in which the
detector, on reaching the right-hand boundary,
would next appear back on the left-hand side of
the screen. To produce a wrap-around effect at the
right-hand edge of the minefield, we alter line
3310 to read:

3310 IF xdet> 17 THEN xdet=2

You may wish to alter this and the other three
boundary tests to provide wrap-around on all
edges of the minefield.

One of the rules of our game is that while the
player moves the mine detector around the
minefield destroying mines the player's assistant
mirrors every move. In order to do this, we must
automatically update the assistant's co-ordinates,
which are related to the detector's co-ordinates by
a simple pair of formulae as shown in lines 3360
and 3370. To demonstrate how these produce
mirror movements let us look at the relationship
between the x co-ordinates (xman=19-xd et).

Initially, xdet is 2 and xman is 17. If the detector
moves one place to the right, xd et will increase to 3.
Using the formula above, xman will be calculated
as 19-3 = 16. This means that the assistant moves
one place to the left. If xdet moves right again, then
xdet will become 4 and xman will be 15, and soon.
The y co-ordinates operate similarly.

Before we PRINT the detector and the assistant
we have one remaining task. We must check to see
if either the assistant or detector is moving into a
character cell that is already occupied by a mine.

Maiming
The game mixes high
resolution graphics with the
BBC/Electron text display. This
has its advantages but means
two different co-ordinate
systems must be mixed, one
for graphics and one for text.
The BBC/Electron has several
different text formats and so
each has its own co-ordinate
system. The game uses mode
five, which gives 20 characters
across the screen and 32 down.
This is shown in the top and
left-hand part of the diagram.

The machines also have
three different graphics
resolutions, but at least these
all use the same co-ordinate
system. This treats all modes
as having a resolution of 1,280
by 1,024. This is shown in the
bottom and right-hand part of
the diagram.

The program uses the high
resolution co-ordinate system
to read points off the low
resolution text display. This
means converting a character
position to a high resolution
co-ordinate. To do this the
horizontal co-ordinate (XCHAR
in the program) must be
multiplied by 64 and the
vertical co-ordinate (YCHAR) by
32. One other problem has to
be overcome. The text screen
co-ordinates start with zero at
the top of the screen and count
down, while the graphics co-
ordinates start with zero at the
bottom and count up. This is
easily solved by subtracting
32*YCHAR from 1,023

THE HOME COMPUTER ADVANCED COURSE 435


