THE HUMAN FACTOR

An important aspect of program design is
the ‘man-machine interface’ — the part of
the program that deals with the transfer of
information from user to program and vice
versa. Here, we investigate the factors to be
considered when designing this interface.

Computer programming was for many years a
mysterious topic that was understood only by
professionals who were prepared to devote much
time and effort to the subject. Before the advent of
the microcomputer with its typewriter-style
keyboard, programs were often entered one byte
at a time via switches on the computer’s front
panel, or by punching holes in tapes on a teletype
console.

Today’s user is, by contrast, a pampered
creature. Manufacturers no longer expect the
computer owner to struggle with machine code,
and the phrase ‘user-friendly’ was coined to
indicate that micros may be used and programmed
by anyone, regardless of experience. In 1982, the
Alvey Committee, in a report entitled A
Programme for Advanced Information
Technology, identified the man-machine interface
(MMI) as one of the four main areas of research
and development, together with software
engineering, very large scale integrated circuit
(VLSI) design and knowledge-based systems.

In any application, the interaction between
computer and user, where data or instructions are
passed between the two, is of paramount
importance. This ‘dialogue’ is conducted through
the computer’s input/output (1/0) devices, with
the keyboard serving as the main source of input
and the display screen providing the output.
Joysticks, paddles, mice, touch screens and other
devices may also be used for input, while the
computer can utilise a printer, sound (or speech)
generator or even a robot to express the output.

In addition to any constraints imposed by the
1/0 devices used, the dialogue between user and
machine is influenced by software. For example,
the computer’s operating system (OS) controls
many details of the screen and keyboard
operation. The rate at which keys repeat when
held down, and the delay between repetitions, is
set by the operating system, which also buffers
keystrokes to allow the computer to store
characters that have been entered faster than they
can be displayed. This is very important as it
affects the speed at which the user may enter
information into the computer. The buffer size is
critical and should be known by the user — the
CP/M operating system, for example, buffers a

512 THE HOME COMPUTER ADVANCED COURSE

single keystroke; many home machines buffer 10
strokes or more.

But keystroke buffers may cause problems. An
experienced user who is working with a menu-
driven system may know in advance that the menu
choices he requires are 2 from the main menu, 5
from the next menu, then 3, 4, 6, etc. Because he is
familiar with the system, he types his choices at
great speed. With a 10-character buffer, the user
will end up where he wanted to go because the
keystrokes will all be ‘remembered’ in the correct
sequence. With a one-character buffer, the time
taken to display the second menu may be longer
than the time taken to type the sequence. Thus,
instead of selecting choice number 5 from this
menu, then 3 and so on, choice number 6 alone is
made (because this is the only character held in the
buffer) and the system stops there.

But a large buffer can also lead to problems. A
menu program that takes a long time to react to a
keypress (this may occur if the choice leads to a file
being read) may cause the user to think that
nothing is happening. The natural response is to
try the last choice entered, then press an
assortment of keys until there is a response. This

may lead to the program attempting to process the
spurious characters held in the buffer; the results
may be surprising!

‘Garbage collection’, which involves clearing
the computer’s memory registers to free working
space is another source of problems. This can
make a program appear to ‘hang’ for long periods,
during which the user may again try to take
corrective action. Garbage collection is likely to
cause problems in large programs that do a lot of
string handling. Some versions of Basic allow the

