
BOOLEAN ALGEBRA/COMPUTER SCIENCE.

variables (+ B + C= A.B.0 andA.B.0 = A +
B + C). De Morgan's laws may also be applied in
stages:

().0
= A.$.Z' (using de Morgan's Law on the

brackets)
_ +$+ (recombining using de Morgan's

Law)

In common with normal algebra there are three
further rules that may be applied to Boolean
algebra, The associative law allows brackets to be
moved:

(A.B).0 = A.(B.0) = A.B.0
(A+B)+C=A+(B+C)=A+B+C

The order in which the letters are written may be
changed according to the commutative law:

A.B = B.A
A+B=B +A

The distributive law allows brackets to be
multiplied out:

A.(B-C)=A.B+A.0

EXAMPLES OF SIMPLIFICATION
1) Simplify (A +8+ A.B).B

_ (A.B + A.B).B (de Morgan)
= A.B.B + A.B.B. (distributive law)
=O+A.B (B.B=0,B.B=B)
= A.B

2) Simplify A.B + A.B + A.B
= A.(B + B) + A.B (distributive law)
=A+A.B (B+B= 1)
= A + B (dual of relation 6)

3) Simplify + B + A + B + A.B_A
= A.B + A.B + A.B (de Morgan)
=A.B+A.B+A.B (A =A)
= A.(B+B)+A.B (distributive law)
=A+A.B (B+B=1)
= A + B (dual of relation 6)

A SIMPLIFIED XOR GATE
In the previous instalment we looked at an
unsimplified circuit for an Exclusive-OR gate. Let
us now examine the same problem again, but this
time armed with the ability to simplify the Boolean
expression and hence the circuit. The truth table
for the Exclusive-OR gate is:

INPUT OUTPUT

A B C

0 0 0

0 1

1 0

1 1

1

1

0

From the truth table we have previously decided
that C= A.B + A.B . There is little simplification

that can be made here and a five gate circuit would
he required to implement this expression.
However, there is an alternative way of
approaching the problem. From the truth table, C
can be said to be 1 if A and B aren't both 1 or both
0. In Boolean terms we can write down an
alternative expression for C:

C = A.B + A.B
Using de Morgan's Laws repeatedly we can
simplify the circuit to get:

C= (AB).(A.B)

and, finally:
C = A.B.(A+B)

This expression requires only four gates:

A A.B A.B
Nor A.B.IA+B)

g nw

o A+B

A FULL ADDER CIRCUIT
Previously, we looked at the process of binary
addition and designed a simple circuit to add two
bits together and produce two outputs for the sum
and carry digits in the answer. This circuit we
called a half adder. If we call the first input X and
the second input Y, we can then verify from the
truth table for a half adder (see page 33) that the
sum (or answer) output (S) can be represented by
the expression: S = X.Y + X.Y. Using de
Morgan's law this expression simplifies to:
S = X.Y.(X + Y). The carry output (C) is simply:
C= X.Y.

In binary arithmetic there are, in fact, three
digits to be added in any one column of the
addition sum. As well as the two digits to be added
there is also a carry over from the previous column
to be included. To be able to reproduce the process
of binary addition we must design a circuit with
three inputs and two outputs. If we call the carry
from the previous column P then the truth table for
a full adder will be:

INPUTS OUTPUTS

P X Y C S

0

0

0

0 0

1 0

0

1

0 . 0

0 1

1 0 1

00 1 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1

THE HOME COMPUTER ADVANCED COURSE 47

