
Control Structures
Pseudo-codeAssembly Language

IF NUM1 =3
THEN

routine1

ELSE
routine2

ENDIF

THREE FCB 3

IFLDA NUM1

CMPA THREE

BNE ELSE

THEN

* routine1

BRA ENDIF

ELSE

* routine 2

ENDIF

Pseudo-codeAssembly Language

WHILE NUM1 <=3
repeated routine
WEND

WHILE LDA NUM1
CMPA THREE
BGT WEND

* repeated routine
BRA WHILE

WEND

Pseudo-codeAssembly Language

REPEAT

repeated routine

UNTIL NUM1 <3

REPEAT............

* repeated routine

LDA NUM1

CMPA THREE

BGE REPEAT

UNTIL

Pseudo-codeAssembly Language

FOR NUM1 =1 TO NUM2

repeated routine

NEXT NUM1

LDA NUM2

FOR

*repeated routine

DECA

BGT FOR

NEXT

The IF. THEN ... ELSE
Structure

The WHILE.. .WEND
Structure

The REPEAT... UNTIL
Structure

The FOR ... NEXT
Structure

6809 CODE/MACHINE CODE

then this stage will probably be the easiest and least
time-consuming of all. In order to translate from a
high-level algorithm to low-level code it is
essential that the control structures used at high
level are carried over to the low level, avoiding the
temptation to use BRA and JMP indiscriminately.
Remember that any time you save by writing
unstructured code is certain to be 'clawed back' in
a frustrating trial-and-error debugging stage. In
the diagram we give some examples of the way in
which the common control structures can be
coded — assuming, for simplicity, that the data
items used are eight-bit.

One problem with coding with control
structures in this way is that the program is longer
than it might be. Where space is not limited then
there is no point in trying to save it; short code does
not usually mean shorter running times but it does
mean longer development and debugging times.
Where space is limited, then it is better to write in a
spacious structured way, and introduce a further
stage of optimisation where the working code can
be shortened to take into account particular
circumstances, retaining as far as possible the
essential structure.
•Debugging: At this stage, each module is
separately tested — using stubs where necessary —
to make sure it gives appropriate outputs for valid
inputs. Debugging Assembly language programs
differs considerably from BASIC program
debugging. To be able to see what is happening, it
is necessary to be able to inspect the contents of the
registers and the memory locations used by the
program, and to change them if necessary. It is
nearly impossible to debug an Assembly program
without the use of a utility for setting and removing
breakpoints. These enable you to run the program
up to the next breakpoint, then dump the registers,
and inspect and change memory contents.
•Testing: Once each module has been tested and
debugged then the entire program has to be put
together and tested with appropriate data. This is
much easier when you know that all the
component parts are working properly.
•Documentation: Assembly language programs
are more difficult to understand than high-level
programs, so documentation is even more
important. In particular, it is vital to document the
use of memory, the use of the stack (especially
while passing parameters), and the register usage
within subroutines.
•Maintenance: If a program is to be used over a
period of time then at some point it will probably
need revision — either to remove any bugs that
appear or to make improvements. It is at this stage
that time spent in careful design and
documentation really pays off. If the program is
badly designed and/or poorly documented then
you are better off doing a complete rewrite rather
than attempting to make alterations.

Now we need a project to apply these design
skills to: for our first venture in structured
Assembly language programming nothing could
be more appropriate than a machine code

monitor/debugger. If you've used an assembler
before, then you may be familiar with the kind of
utilities to expect from a monitor/debugger.
Essentially, it gives the machine code programmer
the kind of editing facilities that the BASIC
programmer takes for granted — namely, the
ability to inspect and change the contents of
memory.

In the next instalment of the course we will take
this project through the design and development
stages described in this article, to create an
important and extremely useful programming aid.

Basic Backbone
There are no control structures
written into Assembly language,
so it pays td import tried and
tested methods from high-level
languages. The structures
shown here are clear and
graceful in both high- and low-
level languages, and should be
used to the exclusion of all
alternatives

THE HOME COMPUTER ADVANCED COURSE 739

